結果

問題 No.1036 Make One With GCD 2
ユーザー 👑 hos.lyric
提出日時 2020-04-24 21:35:57
言語 D
(dmd 2.109.1)
結果
AC  
実行時間 777 ms / 2,000 ms
コード長 4,251 bytes
コンパイル時間 784 ms
コンパイル使用メモリ 122,664 KB
実行使用メモリ 37,908 KB
最終ジャッジ日時 2024-06-22 06:43:49
合計ジャッジ時間 15,085 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 41
権限があれば一括ダウンロードができます
コンパイルメッセージ
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/numeric.d(2999): Warning: cannot inline function `std.numeric.gcdImpl!ulong.gcdImpl`
/home/linuxbrew/.linuxbrew/opt/dmd/include/dlang/dmd/std/numeric.d(2999): Warning: cannot inline function `std.numeric.gcdImpl!ulong.gcdImpl`

ソースコード

diff #
プレゼンテーションモードにする

import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std
    .typecons;
import core.bitop;
class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens
    .popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }
bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }
int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1;
    (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }
// T: monoid
// op: T * T -> T
// query(a, b): returns t_a ... t_{b-1}
class SegmentTree(T, alias op) {
import std.functional : binaryFun;
alias opFun = binaryFun!op;
const(T) idT;
int n;
T[] ts;
this(int n_, const(T) idT) {
this.idT = idT;
for (n = 1; n < n_; n <<= 1) {}
ts = new T[n << 1];
ts[] = idT;
}
this(inout(T)[] ts_, const(T) idT) {
this.idT = idT;
const n_ = cast(int)(ts_.length);
for (n = 1; n < n_; n <<= 1) {}
ts = new T[n << 1];
ts[0 .. n] = idT;
ts[n .. n + n_] = ts_[];
ts[n + n_ .. n << 1] = idT;
build();
}
ref T at(int a) {
return ts[n + a];
}
void build() {
foreach_reverse (a; 1 .. n) ts[a] = opFun(ts[a << 1], ts[a << 1 | 1]);
}
void set(int a, const(T) val) {
ts[a += n] = val;
for (; a >>= 1; ) ts[a] = opFun(ts[a << 1], ts[a << 1 | 1]);
}
void mulL(int a, const(T) val) {
set(a, opFun(val, ts[a + n]));
}
void mulR(int a, const(T) val) {
set(a, opFun(ts[a + n], val));
}
T query(int a, int b) const {
T prodL = idT, prodR = idT;
for (a += n, b += n; a < b; a >>= 1, b >>= 1) {
if (a & 1) prodL = opFun(prodL, ts[a++]);
if (b & 1) prodR = opFun(ts[--b], prodR);
}
return opFun(prodL, prodR);
}
// min b s.t. pred(prod of [a, b)) (or n + 1 if no such b)
// 0 <= a <= n
// assume pred(prod of [a, b)) is non-decreasing in b
int binarySearchR(int a, bool delegate(T) pred) const {
if (pred(idT)) return a;
if (a == n) return n + 1;
T prod = idT;
for (a += n; ; a >>= 1) {
if (a & 1) {
if (pred(opFun(prod, ts[a]))) {
for (; a < n; ) {
a <<= 1;
if (!pred(opFun(prod, ts[a]))) {
prod = opFun(prod, ts[a++]);
}
}
return a - n + 1;
}
prod = opFun(prod, ts[a++]);
if (!(a & a - 1)) return n + 1;
}
}
}
// max a s.t. pred(prod of [a, b)) (or -1 if no such a)
// 0 <= b <= n
// assume pred(prod of [a, b)) is non-increasing in a
int binarySearchL(int b, bool delegate(T) pred) const {
if (pred(idT)) return b;
if (b == 0) return -1;
T prod = idT;
for (b += n; ; b >>= 1) {
if ((b & 1) || b == 2) {
if (pred(opFun(prod, ts[b - 1]))) {
for (; b <= n; ) {
b <<= 1;
if (!pred(opFun(prod, ts[b - 1]))) {
prod = opFun(prod, ts[--b]);
}
}
return b - n - 1;
}
prod = opFun(prod, ts[--b]);
if (!(b & b - 1)) return -1;
}
}
}
}
void main() {
try {
for (; ; ) {
const N = readInt();
auto A = new long[N];
foreach (i; 0 .. N) {
A[i] = readLong();
}
auto seg = new SegmentTree!(long, gcd)(A, 0);
long ans;
foreach (i; 0 .. N) {
const res = seg.binarySearchR(i, a => (a == 1));
debug {
writeln(i, ": ", res);
}
ans += max(N - res + 1, 0);
}
writeln(ans);
}
} catch (EOFException e) {
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0