結果

問題 No.1036 Make One With GCD 2
ユーザー QCFium
提出日時 2020-04-24 21:52:12
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 809 ms / 2,000 ms
コード長 3,872 bytes
コンパイル時間 1,801 ms
コンパイル使用メモリ 173,336 KB
実行使用メモリ 19,092 KB
最終ジャッジ日時 2024-09-16 13:14:32
合計ジャッジ時間 12,884 ms
ジャッジサーバーID
(参考情報)
judge6 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
int ri() {
int n;
scanf("%d", &n);
return n;
}
#define MOD 1000000007
template<int mod>
struct ModInt{
int x;
ModInt():x(0){}
ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){}
ModInt &operator+=(const ModInt &p){
if((x+=p.x)>=mod)x-=mod;
return *this;
}
ModInt &operator-=(const ModInt &p){
if((x+=mod-p.x)>=mod)x-=mod;
return *this;
}
ModInt &operator*=(const ModInt &p){
x=(int)(1LL*x*p.x%mod);
return *this;
}
ModInt &operator/=(const ModInt &p){
*this*=p.inverse();
return *this;
}
ModInt &operator^=(long long p){
ModInt res = 1;
for (; p; p >>= 1) {
if (p & 1) res *= *this;
*this *= *this;
}
return *this = res;
}
ModInt operator-()const{return ModInt(-x);}
ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}
ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}
ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}
ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}
ModInt operator^(long long p)const{return ModInt(*this)^=p;}
bool operator==(const ModInt &p)const{return x==p.x;}
bool operator!=(const ModInt &p)const{return x!=p.x;}
explicit operator int() const { return x; } // added by QCFium
ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium
ModInt inverse()const{
int a=x,b=mod,u=1,v=0,t;
while(b>0){
t=a/b;
a-=t*b;
std::swap(a,b);
u-=t*v;
std::swap(u,v);
}
return ModInt(u);
}
friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){
return os<<p.x;
}
friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){
long long x;
is>>x;
a=ModInt<mod>(x);
return (is);
}
};
typedef ModInt<MOD> mint;
struct MComb {
std::vector<mint> fact;
std::vector<mint> inversed;
MComb(int n) { // O(n+log(mod))
fact = std::vector<mint>(n+1,1);
for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i);
inversed = std::vector<mint>(n+1);
inversed[n] = fact[n] ^ (MOD-2);
for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1);
}
mint ncr(int n, int r) {
return (fact[n] * inversed[r] * inversed[n-r]);
}
mint npr(int n, int r) {
return (fact[n] * inversed[n-r]);
}
mint nhr(int n, int r) {
assert(n+r-1 < (int)fact.size());
return ncr(n+r-1, r);
}
};
int64_t gcd(int64_t a, int64_t b) {
while (a && b) {
if (a > b) a %= b;
else b %= a;
}
return a + b;
}
struct SWAG {
std::vector<int64_t> left_sum;
std::vector<int64_t> right;
std::vector<int64_t> right_sum;
void push_back(int64_t a) {
right.push_back(a);
right_sum.push_back(right_sum.size() ? gcd(right_sum.back(), a) : a);
}
void pop_back() { // just after push_back
right.pop_back();
right_sum.pop_back();
}
void pop_front() {
if (left_sum.size()) left_sum.pop_back();
else {
int r0 = (right.size() + 1) / 2;
if (r0 > 1) {
left_sum.push_back(right[r0 - 1]);
for (int i = r0 - 2; i; i--) left_sum.push_back(gcd(right[i], left_sum.back()));
}
right.erase(right.begin(), right.begin() + r0);
right_sum.resize(right.size());
if (right.size()) {
right_sum[0] = right[0];
for (int i = 1; i < (int) right.size(); i++) right_sum[i] = gcd(right_sum[i - 1], right[i]);
}
}
}
int64_t get() {
int64_t cur = 0;
if (left_sum.size()) cur = gcd(cur, left_sum.back());
if (right_sum.size()) cur = gcd(cur, right_sum.back());
return cur;
}
};
int main() {
int n = ri();
int64_t a[n];
for (auto &i : a) scanf("%" SCNd64, &i);
int l = 0;
int r = 0;
SWAG swag;
int64_t res = 0;
for (int i = 0; i < n; i++) {
if (l == i - 1) {
l++;
if (r == l - 1) r++;
else swag.pop_front();
}
while (r < n) {
swag.push_back(a[r]);
if (swag.get() == 1) {
swag.pop_back();
break;
}
r++;
}
res += n - r;
}
printf("%" PRId64 "\n", res);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0