結果

問題 No.1037 exhausted
ユーザー QCFiumQCFium
提出日時 2020-04-24 22:03:00
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 4,334 bytes
コンパイル時間 1,613 ms
コンパイル使用メモリ 170,148 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-15 02:52:25
合計ジャッジ時間 2,483 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 WA -
testcase_03 AC 2 ms
5,248 KB
testcase_04 WA -
testcase_05 AC 2 ms
5,248 KB
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 2 ms
5,248 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 13 ms
5,248 KB
testcase_21 AC 13 ms
5,248 KB
testcase_22 AC 12 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

int ri() {
	int n;
	scanf("%d", &n);
	return n;
}
#define MOD 1000000007


template<int mod>
struct ModInt{
	int x;
	ModInt():x(0){}
	ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){}
	ModInt &operator+=(const ModInt &p){
		if((x+=p.x)>=mod)x-=mod;
		return *this;
	}
	ModInt &operator-=(const ModInt &p){
		if((x+=mod-p.x)>=mod)x-=mod;
		return *this;
	}
	ModInt &operator*=(const ModInt &p){
		x=(int)(1LL*x*p.x%mod);
		return *this;
	}
	ModInt &operator/=(const ModInt &p){
		*this*=p.inverse();
		return *this;
	}
	ModInt &operator^=(long long p){
		ModInt res = 1;
		for (; p; p >>= 1) {
			if (p & 1) res *= *this;
			*this *= *this;
		}
		return *this = res;
	}
	ModInt operator-()const{return ModInt(-x);}
	ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;}
	ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;}
	ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;}
	ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;}
	ModInt operator^(long long p)const{return ModInt(*this)^=p;}
	bool operator==(const ModInt &p)const{return x==p.x;}
	bool operator!=(const ModInt &p)const{return x!=p.x;}
	explicit operator int() const { return x; }						   // added by QCFium
	ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium
	ModInt inverse()const{
		int a=x,b=mod,u=1,v=0,t;
		while(b>0){
			t=a/b;
			a-=t*b;
			std::swap(a,b);
			u-=t*v;
			std::swap(u,v);
		}
		return ModInt(u);
	}
	friend std::ostream &operator<<(std::ostream &os,const ModInt<mod> &p){
		return os<<p.x;
	}
	friend std::istream &operator>>(std::istream &is,ModInt<mod> &a){
		long long x;
		is>>x;
		a=ModInt<mod>(x);
		return (is);
	}
};
typedef ModInt<MOD> mint;

struct MComb {
	std::vector<mint> fact;
	std::vector<mint> inversed;
	MComb(int n) { // O(n+log(mod))
		fact = std::vector<mint>(n+1,1);
		for (int i = 1; i <= n; i++) fact[i] = fact[i-1]*mint(i);
		inversed = std::vector<mint>(n+1);
		inversed[n] = fact[n] ^ (MOD-2);
		for (int i = n - 1; i >= 0; i--) inversed[i]=inversed[i+1]*mint(i+1);
	}
	mint ncr(int n, int r) {
		return (fact[n] * inversed[r] * inversed[n-r]);
	}
	mint npr(int n, int r) {
		return (fact[n] * inversed[n-r]);
	}
	mint nhr(int n, int r) {
		assert(n+r-1 < (int)fact.size());
		return ncr(n+r-1, r);
	}
};

int64_t gcd(int64_t a, int64_t b) {
	while (a && b) {
		if (a > b) a %= b;
		else b %= a;
	}
	return a + b;
}

struct SWAG {
	std::vector<int64_t> left_sum;
	std::vector<int64_t> right;
	std::vector<int64_t> right_sum;
	void push_back(int64_t a) {
		right.push_back(a);
		right_sum.push_back(right_sum.size() ? gcd(right_sum.back(), a) : a);
	}
	void pop_back() { // just after push_back
		right.pop_back();
		right_sum.pop_back();
	}
	void pop_front() {
		if (left_sum.size()) left_sum.pop_back();
		else {
			int r0 = (right.size() + 1) / 2;
			if (r0 > 1) {
				left_sum.push_back(right[r0 - 1]);
				for (int i = r0 - 2; i; i--) left_sum.push_back(gcd(right[i], left_sum.back()));
			}
			right.erase(right.begin(), right.begin() + r0);
			right_sum.resize(right.size());
			if (right.size()) {
				right_sum[0] = right[0];
				for (int i = 1; i < (int) right.size(); i++) right_sum[i] = gcd(right_sum[i - 1], right[i]);
			}
		}
	}
	int64_t get() {
		int64_t cur = 0;
		if (left_sum.size()) cur = gcd(cur, left_sum.back());
		if (right_sum.size()) cur = gcd(cur, right_sum.back());
		return cur;
	}
};


int main() {
	int n = ri();
	int max = ri();
	int l = ri();
	struct Station {
		int pos;
		int max;
		int cost;
	};
	Station stations[n];
	for (auto &i : stations) i.pos = ri(), i.max = ri(), i.cost = ri();
	int64_t dp[max + 1];
	for (auto &i : dp) i = 1000000000000000000;
	dp[max] = 0;
	int last = 0;
	for (int i = 0; i < n; i++) {
		int move = stations[i].pos - last;
		last = stations[i].pos;
		for (int j = 0; j < move && j <= max; j++) dp[j] = 1000000000000000000;
		for (int j = move; j <= max; j++) dp[j - move] = dp[j], dp[j] = 1000000000000000000;
		for (int j = max; j >= 0; j--) {
			auto &target = dp[std::min(j + stations[i].max, max)];
			target = std::min(target, dp[j] + stations[i].cost);
		}
	}
	int64_t res = 1000000000000000000;
	for (int i = l - last; i <= max; i++) res = std::min(res, dp[i]);
	printf("%" PRId64 "\n", res == 1000000000000000000 ? -1 : res);
	return 0;
}
0