結果

問題 No.1035 Color Box
ユーザー KoD
提出日時 2020-04-24 22:03:47
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 15 ms / 2,000 ms
コード長 4,352 bytes
コンパイル時間 1,167 ms
コンパイル使用メモリ 76,732 KB
最終ジャッジ日時 2025-01-09 23:49:56
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <utility>
#include <vector>
#include <numeric>
template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) {
lhs = rhs;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) {
lhs = rhs;
return true;
}
return false;
}
// [l, r) from l to r
struct range {
struct itr {
int i;
constexpr itr(int i_): i(i_) { }
constexpr void operator ++ () { ++i; }
constexpr int operator * () const { return i; }
constexpr bool operator != (itr x) const { return i != x.i; }
};
const itr l, r;
constexpr range(int l_, int r_): l(l_), r(std::max(l_, r_)) { }
constexpr itr begin() const { return l; }
constexpr itr end() const { return r; }
};
// [l, r) from r to l
struct revrange {
struct itr {
int i;
constexpr itr(int i_): i(i_) { }
constexpr void operator ++ () { --i; }
constexpr int operator * () const { return i; }
constexpr bool operator != (itr x) const { return i != x.i; }
};
const itr l, r;
constexpr revrange(int l_, int r_): l(l_ - 1), r(std::max(l_, r_) - 1) { }
constexpr itr begin() const { return r; }
constexpr itr end() const { return l; }
};
template <class T>
class modulo_int {
public:
static constexpr int mod = T::value;
static_assert(mod > 0, "mod must be positive");
private:
long long value;
constexpr void normalize() {
value %= mod;
if (value < 0) value += mod;
}
public:
constexpr modulo_int(long long value_ = 0): value(value_) { normalize(); }
constexpr modulo_int operator - () const { return modulo_int(mod - value); }
constexpr modulo_int operator ~ () const { return power(mod - 2); }
constexpr long long operator () () const { return value; }
constexpr modulo_int operator + (const modulo_int &rhs) const { return modulo_int(*this) += rhs; }
constexpr modulo_int &operator += (const modulo_int &rhs) {
if ((value += rhs.value) >= mod) value -= mod;
return (*this);
}
constexpr modulo_int operator - (const modulo_int &rhs) const { return modulo_int(*this) -= rhs; }
constexpr modulo_int &operator -= (const modulo_int &rhs) {
if ((value += mod - rhs.value) >= mod) value -= mod;
return (*this);
}
constexpr modulo_int operator * (const modulo_int &rhs) const { return modulo_int(*this) *= rhs; }
constexpr modulo_int &operator *= (const modulo_int &rhs) {
(value *= rhs.value) %= mod;
return (*this);
}
constexpr modulo_int operator / (const modulo_int &rhs) const { return modulo_int(*this) /= rhs; }
constexpr modulo_int &operator /= (const modulo_int &rhs) {
return (*this) *= ~rhs;
}
constexpr bool operator == (const modulo_int &rhs) const {
return value == rhs();
}
constexpr bool operator != (const modulo_int &rhs) const {
return value != rhs();
}
constexpr modulo_int power (unsigned long long pow) const {
modulo_int result(1), mult(*this);
while (pow > 0) {
if (pow & 1) result *= mult;
mult *= mult;
pow >>= 1;
}
return result;
}
friend std::istream &operator >> (std::istream &stream, modulo_int &lhs) {
stream >> lhs.value;
lhs.normalize();
return stream;
}
friend std::ostream &operator << (std::ostream &stream, const modulo_int &rhs) {
return stream << rhs.value;
}
};
template <class T>
class factorials {
public:
using value_type = T;
public:
std::vector<value_type> fact, fact_inv;
factorials(int size_ = 200000): fact(size_ + 1), fact_inv(size_ + 1) {
fact[0] = 1;
for (int i = 1; i <= size_; ++i) {
fact[i] = fact[i - 1] * value_type(i);
}
fact_inv[size_] = ~fact[size_];
for (int i = size_; i > 0; --i) {
fact_inv[i - 1] = fact_inv[i] * value_type(i);
}
}
value_type operator () (int n, int r) const {
return fact[n] * fact_inv[n - r] * fact_inv[r];
}
};
using modint = modulo_int<std::integral_constant<int, 1000000007>>;
factorials<modint> fact(100000);
int main() {
int N, M;
std::cin >> N >> M;
modint ans = modint(M).power(N);
for (int i: range(1, M)) {
if (i % 2 == 1) {
ans -= fact(M, i) * modint(M - i).power(N);
}
else {
ans += fact(M, i) * modint(M - i).power(N);
}
}
std::cout << ans << '\n';
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0