結果

問題 No.1036 Make One With GCD 2
ユーザー hirono999
提出日時 2020-04-24 22:47:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,709 ms / 2,000 ms
コード長 5,829 bytes
コンパイル時間 2,183 ms
コンパイル使用メモリ 198,200 KB
最終ジャッジ日時 2025-01-10 00:18:39
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 41
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
const long long INF = 1LL << 60;
const long long MOD = 1000000007;
const double PI = acos(-1.0);
#define rep(i, n) for (ll i = 0; i < (n); ++i)
#define rep1(i, n) for (ll i = 1; i <= (n); ++i)
#define rrep(i, n) for (ll i = (n - 1); i >= 0; --i)
#define perm(c) sort(ALL(c));for(bool c##p=1;c##p;c##p=next_permutation(ALL(c)))
#define ALL(obj) (obj).begin(), (obj).end()
#define RALL(obj) (obj).rbegin(), (obj).rend()
#define pb push_back
#define to_s to_string
#define len(v) (ll)v.size()
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define print(x) cout << (x) << '\n'
#define drop(x) cout << (x) << '\n', exit(0)
#define debug(x) cout << #x << ": " << (x) << '\n'
using namespace std;
using ll = long long;
typedef pair<ll, ll> P;
typedef vector<ll> vec;
typedef vector<vector<ll>> vec2;
typedef vector<vector<vector<ll>>> vec3;
template<class S, class T> inline bool chmax(S &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class S, class T> inline bool chmin(S &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
inline ll msb(ll v) { return 1 << (31 - __builtin_clzll(v)); }
inline ll devc(ll x, ll y) { return (x + y - 1) / y; }
inline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
inline ll lcm(ll a, ll b) { return a * (b / gcd(a, b)); }
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator << (ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator >> (istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T1, typename T2, typename T3 >
ostream &operator << (ostream &os, const tuple< T1, T2, T3 > &t) {
os << get<0>(t) << " " << get<1>(t) << " " << get<2>(t);
return os;
}
template< typename T1, typename T2, typename T3 >
istream &operator >> (istream &is, tuple< T1, T2, T3 > &t) {
is >> get<0>(t) >> get<1>(t) >> get<2>(t);
return is;
}
template< typename T >
ostream &operator << (ostream &os, const vector< T > &v){
for (int i = 0; i < (int)v.size(); ++i) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator >> (istream &is, vector< T > &v){
for(T &in : v) is >> in;
return is;
}
/*--------------------------------- Tools ------------------------------------------*/
template< typename T >
vector<T> cumsum(const vector<T> &X){
vector<T> res(X.size() + 1, 0);
for(int i = 0; i < X.size(); ++i) res[i + 1] += res[i] + X[i];
return res;
}
template< typename S, typename T, typename F>
pair<T, T> bisearch(S left, T right, F f) {
while(abs(right - left) > 1){
T mid = (right + left) / 2;
if(f(mid)) right = mid;
else left = mid;
}
return {left, right};
}
template< typename S, typename T, typename F>
double trisearch(S left, T right, F f, int maxLoop = 90){
double low = left, high = right;
while(maxLoop--){
double mid_left = high / 3 + low * 2 / 3;
double mid_right = high * 2 / 3 + low / 3;
if(f(mid_left) >= f(mid_right)) low = mid_left;
else high = mid_right;
}
return (low + high) * 0.5;
}
/*------------------------------- Main Code Here -----------------------------------------*/
//Def of Monoid
//Suppose that S is a set and ● is some binary opeartion S x S -> S
//then S with ● is a monoid if it satisfies the following two:
// Associativity()
// For all a,b and c in S, the equation (a ● b) ● c = a ● (b ● c) holds
// Identitiy element()
// There exisits an element e in S such that for every element a in S,
// the equations e ● a = a ● e = a holds
//Eample of Monoid
//+, *, and, or, xor, min, max
//Build O(N)
//Query O(log N)
//- query(a,b) : applay operation to the range [a, b)
//- update(k,x) : change k-th element to x
//- operator[k] : return k-th element
template< typename Monoid >
class SegmentTree{
private:
using F = function<Monoid(Monoid, Monoid)>;
long long sz;
vector<Monoid> seg;
const F f;
const Monoid e;
public:
SegmentTree(long long n, const F f, const Monoid &e) : f(f), e(e){
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz, e);
}
void set(long long k, const Monoid &x){
seg[k + sz] = x;
}
void build() {
for (long long k = sz - 1; k > 0; --k){
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(long long k, const Monoid &x) {
k += sz;
seg[k] = x;
while(k >>= 1) seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
Monoid query(long long a, long long b){
Monoid L = e, R = e;
for (a += sz, b += sz; a < b; a >>= 1, b >>= 1){
if(a & 1) L = f(L, seg[a++]);
if(b & 1) R = f(seg[--b],R);
}
return f(L, R);
}
Monoid operator[](const int &k) const {
return seg[k + sz];
}
};
int main()
{
ll N;
cin >> N;
vec A(N);
cin >> A;
SegmentTree<ll> segtree(N, [&](ll x, ll y) { return gcd(x, y); }, 0);
rep(i, N) segtree.set(i, A[i]);
segtree.build();
ll ans = 0;
ll right = 0;
for(ll left = 0; left < N; ++left){
while(segtree.query(left, right) != 1 and right < N) ++right;
if(segtree.query(left, right) == 1) ans += (N - right + 1);
}
print(ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0