結果
問題 | No.1039 Project Euler でやれ |
ユーザー | koba-e964 |
提出日時 | 2020-04-24 22:52:45 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 11,222 bytes |
コンパイル時間 | 19,834 ms |
コンパイル使用メモリ | 376,492 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-08 02:58:45 |
合計ジャッジ時間 | 16,388 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 4 ms
5,248 KB |
testcase_02 | AC | 5 ms
5,248 KB |
testcase_03 | AC | 6 ms
5,248 KB |
testcase_04 | AC | 7 ms
5,248 KB |
testcase_05 | AC | 5 ms
5,248 KB |
testcase_06 | AC | 5 ms
5,248 KB |
testcase_07 | AC | 1 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 4 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 3 ms
5,248 KB |
testcase_15 | AC | 4 ms
5,248 KB |
testcase_16 | AC | 1 ms
5,248 KB |
testcase_17 | AC | 1 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 1 ms
5,248 KB |
ソースコード
#[allow(unused_imports)] use std::cmp::*; #[allow(unused_imports)] use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes .by_ref() .map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr, ) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ( $(read_value!($next, $t)),* ) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, chars) => { read_value!($next, String).chars().collect::<Vec<char>>() }; ($next:expr, usize1) => { read_value!($next, usize) - 1 }; ($next:expr, [ $t:tt ]) => {{ let len = read_value!($next, usize); (0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }}; ($next:expr, $t:ty) => { $next().parse::<$t>().expect("Parse error") }; } #[allow(unused)] macro_rules! debug { ($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap()); } #[allow(unused)] macro_rules! debugln { ($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap()); } /// https://judge.yosupo.jp/submission/5155 mod pollard_rho { use std::collections::HashMap; /// binary gcd pub fn gcd(mut x: i64, mut y: i64) -> i64 { if y == 0 { return x; } if x == 0 { return y; } let k = (x | y).trailing_zeros(); y >>= k; x >>= x.trailing_zeros(); while y != 0 { y >>= y.trailing_zeros(); if x > y { let t = x; x = y; y = t; } y -= x; } x << k } fn add_mod(x: i64, y: i64, n: i64) -> i64 { let z = x + y; if z >= n { z - n } else { z } } fn mul_mod(x: i64, mut y: i64, n: i64) -> i64 { assert!(x >= 0); assert!(x < n); let mut sum = 0; let mut cur = x; while y > 0 { if (y & 1) == 1 { sum = add_mod(sum, cur, n); } cur = add_mod(cur, cur, n); y >>= 1; } sum } fn mod_pow(x: i64, mut e: i64, n: i64) -> i64 { let mut prod = if n == 1 { 0 } else { 1 }; let mut cur = x % n; while e > 0 { if (e & 1) == 1 { prod = mul_mod(prod, cur, n); } e >>= 1; if e > 0 { cur = mul_mod(cur, cur, n); } } prod } pub fn is_prime(n: i64) -> bool { if n <= 1 { return false; } let small = [2, 3, 5, 7, 11, 13]; if small.iter().any(|&u| u == n) { return true; } if small.iter().any(|&u| n % u == 0) { return false; } let mut d = n - 1; let e = d.trailing_zeros(); d >>= e; // https://miller-rabin.appspot.com/ let a = [2, 325, 9375, 28178, 450775, 9780504, 1795265022]; a.iter().all(|&a| { if a % n == 0 { return true; } let mut x = mod_pow(a, d, n); if x == 1 { return true; } for _ in 0 .. e { if x == n - 1 { return true; } x = mul_mod(x, x, n); if x == 1 { return false; } } x == 1 }) } fn pollard_rho(n: i64, c: &mut i64) -> i64 { // An improvement with Brent's cycle detection algorithm is performed. // https://maths-people.anu.edu.au/~brent/pub/pub051.html if n % 2 == 0 { return 2; } loop { let mut x: i64; // tortoise let mut y = 2; // hare let mut d = 1; let cc = *c; let f = |i| add_mod(mul_mod(i, i, n), cc, n); let mut r = 1; // We don't perform the gcd-once-in-a-while optimization // because the plain gcd-every-time algorithm appears to // outperform, at least on judge.yosupo.jp :) while d == 1 { x = y; for _ in 0..r { y = f(y); d = gcd((x - y).abs(), n); if d != 1 { break; } } r *= 2; } if d == n { *c += 1; continue; } return d; } } /// Outputs (p, e) in p's ascending order. pub fn factorize(x: i64) -> Vec<(i64, usize)> { if x <= 1 { return Vec::new(); } let mut hm = HashMap::new(); let mut pool = vec![x]; let mut c = 1; while let Some(u) = pool.pop() { if is_prime(u) { *hm.entry(u).or_insert(0) += 1; continue; } let p = pollard_rho(u, &mut c); pool.push(p); pool.push(u / p); } let mut v: Vec<_> = hm.into_iter().collect(); v.sort(); v } } // mod pollard_rho /// Verified by https://atcoder.jp/contests/arc093/submissions/3968098 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> ::std::fmt::Debug for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let (mut a, mut b, _) = red(self.x, M::m()); if b < 0 { a = -a; b = -b; } write!(f, "{}/{}", a, b) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } // Finds the simplest fraction x/y congruent to r mod p. // The return value (x, y, z) satisfies x = y * r + z * p. fn red(r: i64, p: i64) -> (i64, i64, i64) { if r.abs() <= 10000 { return (r, 1, 0); } let mut nxt_r = p % r; let mut q = p / r; if 2 * nxt_r >= r { nxt_r -= r; q += 1; } if 2 * nxt_r <= -r { nxt_r += r; q -= 1; } let (x, z, y) = red(nxt_r, r); (x, y - q * z, z) } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 1_000_000_007; define_mod!(P, MOD); type ModInt = mod_int::ModInt<P>; // Finds #GL(k, Z/(p^n)). fn gl(p: ModInt, n: i64, k: i64) -> ModInt { let mut prod = ModInt::new(1); let pk = p.pow(k); for i in 0..k { prod *= pk - p.pow(i); } prod * p.pow((n - 1) * k * k) } fn dfs(p: i64, e: usize, last: usize, path: &mut Vec<(usize, usize)>) -> ModInt { if e == 0 { let p = ModInt::new(p); let mut prod = ModInt::new(1); let mut pexp: i64 = 0; for i in 0..path.len() { let (n, k) = path[i]; prod *= gl(p, n as i64, k as i64); for j in 0..path.len() { if i == j { continue; } let exp = min(path[j].0, n) as i64 * path[j].1 as i64 * k as i64; pexp += exp; } } return (prod * p.pow(pexp)).inv(); } if last == 0 { return 0.into(); } let mut sum = ModInt::new(0); for i in 1..last + 1 { for j in 1..e / i + 1 { path.push((i, j)); sum += dfs(p, e - i * j, i - 1, path); path.pop(); } } sum } fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts { ($($format:tt)*) => (let _ = write!(out,$($format)*);); } input! { m: i64, } let facs = pollard_rho::factorize(m); let mut prod = ModInt::new(1); for i in 1..m + 1 { prod *= i; } for &(p, e) in &facs { prod *= dfs(p, e, e, &mut vec![]); } puts!("{}\n", prod); } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); }