結果
| 問題 |
No.1039 Project Euler でやれ
|
| コンテスト | |
| ユーザー |
maspy
|
| 提出日時 | 2020-04-24 23:02:37 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 2,418 bytes |
| コンパイル時間 | 88 ms |
| コンパイル使用メモリ | 12,672 KB |
| 実行使用メモリ | 44,648 KB |
| 最終ジャッジ日時 | 2024-10-15 03:40:57 |
| 合計ジャッジ時間 | 11,412 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 2 |
| other | RE * 18 |
ソースコード
import sys
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
import numpy as np
from functools import lru_cache
MOD = 10 ** 9 + 7
U = 10 ** 3 + 10
is_prime = np.zeros(U, np.bool)
is_prime[2] = 1
is_prime[3::2] = 1
for p in range(3, U, 2):
if p * p >= U:
break
if is_prime[p]:
is_prime[p * p:: p + p] = 0
primes = np.where(is_prime)[0]
def cumprod(A, MOD=MOD):
L = len(A)
Lsq = int(L**.5 + 1)
A = np.resize(A, Lsq**2).reshape(Lsq, Lsq)
for n in range(1, Lsq):
A[:, n] *= A[:, n - 1]
A[:, n] %= MOD
for n in range(1, Lsq):
A[n] *= A[n - 1, -1]
A[n] %= MOD
return A.ravel()[:L]
def make_fact(U, MOD=MOD):
x = np.arange(U, dtype=np.int64)
x[0] = 1
fact = cumprod(x, MOD)
fact.flags.writeable = False
return fact
def factor(M):
pf = primes[M % primes == 0]
for p in pf:
e = 0
while M % p == 0:
M //= p
e += 1
yield (int(p), e)
if M > 1:
yield (int(M), 1)
@lru_cache(None)
def GL(p, n):
# count the element of GL(n,F_p)
x = 1
for i in range(n):
x *= (p ** n - p ** i)
x %= MOD
return x % MOD
def Aut(p, e, partition):
# count Aut(prod Z/p^{n_i})
x = 1
partition = partition[::-1]
n = len(partition)
for i in range(n):
k = partition[i]
# 位数 2^k の元
a = 0
b = 0
for kk in partition[i:]:
if kk == k:
a += k
b += k - 1
else:
a += kk
b += kk
x *= (p ** a - p ** b)
x *= p ** sum(partition[:i])
x %= MOD
return x
def make_partitions(N, largest=None):
if N == 0:
yield []
return
if largest is None:
largest = N
if largest > N:
largest = N
for i in range(largest, 0, -1):
for p in make_partitions(N - i, i):
yield p + [i]
def compute_p_part(p, e):
# sum(1 / Aut)
x = 0
for par in make_partitions(e):
aut = Aut(p, e, par)
x += pow(aut, MOD - 2, MOD)
x %= MOD
return x
def solve(M):
fact = make_fact(M + 10)
x = 1
for p, e in factor(M):
x *= compute_p_part(p, e)
x %= MOD
x *= fact[M]
return x % MOD
M = int(read())
print(solve(M))
maspy