結果
| 問題 |
No.1039 Project Euler でやれ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-04-24 23:11:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,555 bytes |
| コンパイル時間 | 2,101 ms |
| コンパイル使用メモリ | 183,764 KB |
| 実行使用メモリ | 30,592 KB |
| 最終ジャッジ日時 | 2024-10-15 03:45:04 |
| 合計ジャッジ時間 | 3,035 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 3 WA * 15 |
ソースコード
#pragma region kyopro_template
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define inc(...) \
char __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
using namespace std;
void solve();
using ll = long long;
template <class T = ll>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ll ceil(T a, U b) {
return (a + b - 1) / b;
}
constexpr ll TEN(int n) {
ll ret = 1, x = 10;
while (n) {
if (n & 1) ret *= x;
x *= x;
n >>= 1;
}
return ret;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
cout << t;
if (sizeof...(u)) cout << " ";
out(u...);
}
template <typename T>
void die(T x) {
out(x);
exit(0);
}
#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...) \
do { \
cerr << #__VA_ARGS__ << " = "; \
dbg_out(__VA_ARGS__); \
} while (0)
#define trca(v, N) \
do { \
cerr << #v << " = "; \
array_out(v, N); \
} while (0)
#define trcc(v) \
do { \
cerr << #v << " = {"; \
each(x, v) { cerr << " " << x << ","; } \
cerr << "}" << endl; \
} while (0)
#else
#define trc(...)
#define trca(...)
#define trcc(...)
int main() { solve(); }
#endif
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
inline int popcount(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
vector<T> ret(v.size() + 1);
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename T>
vector<int> mkord(int N, function<bool(int, int)> f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
#pragma endregion
constexpr long long MOD = /**/ 1000000007; //*/ 998244353;
template< int mod >
struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int) (1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const ModInt &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
static constexpr int get_mod() { return mod; }
};
using mint = ModInt<MOD>;
using vm = vector<mint>;
vector<ll> fac,finv,inv;
void cominit(int MAX) {
MAX++;
fac.resize(MAX , 0);
finv.resize(MAX , 0);
inv.resize(MAX , 0);
fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
// nCk combination
inline long long COM(int n,int k){
if(n < k || k < 0 || n < 0) return 0;
else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
// nPk permutation
inline long long PER(int n,int k){
if (n < k || k < 0 || n < 0) return 0;
else return (fac[n] * finv[n - k]) % MOD;
}
// nHk homogeneous polynomial
inline long long HGP(int n,int k){
if(n == 0 && k == 0) return 1; // depending on problem?
else if(n < 1 || k < 0) return 0;
else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD;
}
// Prime -> 1 {0, 0, 1, 1, 0, 1, 0, 1, ...}
vector<int> Primes(int N) {
vector<int> A(N + 1, 1);
A[0] = A[1] = 0;
for (int i = 2; i * i <= N; i++)
if (A[i] == 1)
for (int j = i << 1; j <= N; j += i) A[j] = 0;
return A;
}
// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<long long> PrimeSieve(int N) {
vector<int> prime = Primes(N);
vector<long long> ret;
for (int i = 0; i < (int)prime.size(); i++)
if (prime[i] == 1) ret.push_back(i);
return ret;
}
// Factors (using for fast factorization)
// {0, 0, 1, 1, 2, 1, 2, 1, 2, 3, ...}
vector<int> Factors(int N) {
vector<int> A(N + 1, 1);
A[0] = A[1] = 0;
for (int i = 2; i * i <= N; i++)
if (A[i] == 1)
for (int j = i << 1; j <= N; j += i) A[j] = i;
return A;
}
// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
vector<int> ret(N + 1, 0);
for (int i = 0; i <= N; i++) ret[i] = i;
for (int i = 2; i <= N; i++) {
if (ret[i] == i)
for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
}
return ret;
}
// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
vector<long long> v;
for (long long i = 1; i * i <= N; i++) {
if (N % i == 0) {
v.push_back(i);
if (i * i != N) v.push_back(N / i);
}
}
return v;
}
// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
vector<pair<long long, int> > ret;
for (long long p = 2; p * p <= N; p++)
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
const vector<long long> &prime) {
vector<pair<long long, int> > ret;
for (auto &p : prime) {
if (p * p > N) break;
if (N % p == 0) {
ret.emplace_back(p, 0);
while (N % p == 0) N /= p, ret.back().second++;
}
}
if (N >= 2) ret.emplace_back(N, 1);
return ret;
}
// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
a %= mod;
long long ret = 1;
while (n > 0) {
if (n & 1) ret = ret * a % mod;
a = a * a % mod;
n >>= 1;
}
return ret % mod;
};
// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
r %= mod;
if (r == 0) return false;
auto pf = PrimeFactors(mod - 1);
for (auto &x : pf) {
if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
}
return true;
}
// Get Primitive Root
long long PrimitiveRoot(long long mod) {
long long ret = 1;
while (isPrimitiveRoot(ret, mod) == false) ret++;
return ret;
}
// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
long long extgcd(long long a, long long b, long long &x, long long &y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extgcd(b, a % b, y, x);
y -= a / b * x;
return d;
}
// Check if n is Square Number
bool isSquare(ll n) {
if(n == 0 || n == 1) return true;
ll d = (ll)sqrt(n) - 1;
while (d * d < n) ++d;
return d * d == n;
}
// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(ll n, int zero = 1) {
if (n == 0) return zero;
int ret = 0;
while (n) {
n /= 10;
ret++;
}
return ret;
}
void solve(){
inl(N);
cominit(N+10);
auto ds = Divisor(N);
sort(all(ds));
vm dp(N+1);
each(x,ds){
if(x == 1) dp[x] = 0;
else dp[x] = x * fac[x - 2];
each(y , ds){
if(y >= x) break;
if(x % y == 0){
dp[x] += dp[y].pow(x/y) * dp[x/y];
}
}
}
trc(dp);
out(dp[N]);
}