結果

問題 No.1039 Project Euler でやれ
ユーザー NyaanNyaanNyaanNyaan
提出日時 2020-04-24 23:11:08
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 11,555 bytes
コンパイル時間 2,101 ms
コンパイル使用メモリ 183,764 KB
実行使用メモリ 30,592 KB
最終ジャッジ日時 2024-10-15 03:45:04
合計ジャッジ時間 3,035 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 AC 38 ms
30,592 KB
testcase_04 AC 39 ms
30,592 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 2 ms
5,248 KB
testcase_18 WA -
testcase_19 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region kyopro_template
#include <bits/stdc++.h>
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define each(x, v) for (auto &x : v)
#define all(v) (v).begin(), (v).end()
#define sz(v) ((int)(v).size())
#define mem(a, val) memset(a, val, sizeof(a))
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define inc(...)    \
  char __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
using namespace std;
void solve();
using ll = long long;
template <class T = ll>
using V = vector<T>;
using vi = vector<int>;
using vl = vector<long long>;
using vvi = vector<vector<int>>;
using vd = V<double>;
using vs = V<string>;
using vvl = vector<vector<long long>>;
using P = pair<long long, long long>;
using vp = vector<P>;
using pii = pair<int, int>;
using vpi = vector<pair<int, int>>;
constexpr int inf = 1001001001;
constexpr long long infLL = (1LL << 61) - 1;
template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}
template <typename T, typename U>
ll ceil(T a, U b) {
  return (a + b - 1) / b;
}
constexpr ll TEN(int n) {
  ll ret = 1, x = 10;
  while (n) {
    if (n & 1) ret *= x;
    x *= x;
    n >>= 1;
  }
  return ret;
}

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << " ";
  out(u...);
}
template <typename T>
void die(T x) {
  out(x);
  exit(0);
}

#ifdef NyaanDebug
#include "NyaanDebug.h"
#define trc(...)                   \
  do {                             \
    cerr << #__VA_ARGS__ << " = "; \
    dbg_out(__VA_ARGS__);          \
  } while (0)
#define trca(v, N)       \
  do {                   \
    cerr << #v << " = "; \
    array_out(v, N);     \
  } while (0)
#define trcc(v)                             \
  do {                                      \
    cerr << #v << " = {";                   \
    each(x, v) { cerr << " " << x << ","; } \
    cerr << "}" << endl;                    \
  } while (0)
#else
#define trc(...)
#define trca(...)
#define trcc(...)
int main() { solve(); }
#endif

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

inline int popcount(unsigned long long a) { return __builtin_popcountll(a); }
inline int lsb(unsigned long long a) { return __builtin_ctzll(a); }
inline int msb(unsigned long long a) { return 63 - __builtin_clzll(a); }
template <typename T>
inline int getbit(T a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void setbit(T &a, int i) {
  a |= (1LL << i);
}
template <typename T>
inline void delbit(T &a, int i) {
  a &= ~(1LL << i);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
vector<T> mkrui(const vector<T> &v) {
  vector<T> ret(v.size() + 1);
  for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename T>
vector<int> mkord(int N, function<bool(int, int)> f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

#pragma endregion

constexpr long long MOD = /**/ 1000000007;  //*/ 998244353;

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static constexpr int get_mod() { return mod; }
};
using mint = ModInt<MOD>;
using vm = vector<mint>;

vector<ll> fac,finv,inv;
void cominit(int MAX) {
  MAX++;
  fac.resize(MAX , 0);
  finv.resize(MAX , 0);
  inv.resize(MAX , 0);
  fac[0] = fac[1] = finv[0] = finv[1] = inv[1] = 1;
  for (int i = 2; i < MAX; i++){
    fac[i] = fac[i - 1] * i % MOD;
    inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
    finv[i] = finv[i - 1] * inv[i] % MOD;
  }
}
// nCk combination 
inline long long COM(int n,int k){
  if(n < k || k < 0 || n < 0) return 0;
  else return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
// nPk permutation
inline long long PER(int n,int k){
  if (n < k || k < 0 || n < 0) return 0;
  else return (fac[n] * finv[n - k]) % MOD;
}
// nHk homogeneous polynomial
inline long long HGP(int n,int k){
  if(n == 0 && k == 0) return 1; // depending on problem?
  else if(n < 1 || k < 0) return 0;
  else return fac[n + k - 1] * (finv[k] * finv[n - 1] % MOD) % MOD;
}

// Prime -> 1 {0, 0, 1, 1, 0, 1, 0, 1, ...}
vector<int> Primes(int N) {
  vector<int> A(N + 1, 1);
  A[0] = A[1] = 0;
  for (int i = 2; i * i <= N; i++)
    if (A[i] == 1)
      for (int j = i << 1; j <= N; j += i) A[j] = 0;
  return A;
}

// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<long long> PrimeSieve(int N) {
  vector<int> prime = Primes(N);
  vector<long long> ret;
  for (int i = 0; i < (int)prime.size(); i++)
    if (prime[i] == 1) ret.push_back(i);
  return ret;
}

// Factors (using for fast factorization)
// {0, 0, 1, 1, 2, 1, 2, 1, 2, 3, ...}
vector<int> Factors(int N) {
  vector<int> A(N + 1, 1);
  A[0] = A[1] = 0;
  for (int i = 2; i * i <= N; i++)
    if (A[i] == 1)
      for (int j = i << 1; j <= N; j += i) A[j] = i;
  return A;
}

// totient function φ(N)=(1 ~ N , gcd(i,N) = 1)
// {0, 1, 1, 2, 4, 2, 6, 4, ... }
vector<int> EulersTotientFunction(int N) {
  vector<int> ret(N + 1, 0);
  for (int i = 0; i <= N; i++) ret[i] = i;
  for (int i = 2; i <= N; i++) {
    if (ret[i] == i)
      for (int j = i; j <= N; j += i) ret[j] = ret[j] / i * (i - 1);
  }
  return ret;
}

// Divisor ex) 12 -> {1, 2, 3, 4, 6, 12}
vector<long long> Divisor(long long N) {
  vector<long long> v;
  for (long long i = 1; i * i <= N; i++) {
    if (N % i == 0) {
      v.push_back(i);
      if (i * i != N) v.push_back(N / i);
    }
  }
  return v;
}

// Factorization
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N) {
  vector<pair<long long, int> > ret;
  for (long long p = 2; p * p <= N; p++)
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// Factorization with Prime Sieve
// ex) 18 -> { (2,1) , (3,2) }
vector<pair<long long, int> > PrimeFactors(long long N,
                                           const vector<long long> &prime) {
  vector<pair<long long, int> > ret;
  for (auto &p : prime) {
    if (p * p > N) break;
    if (N % p == 0) {
      ret.emplace_back(p, 0);
      while (N % p == 0) N /= p, ret.back().second++;
    }
  }
  if (N >= 2) ret.emplace_back(N, 1);
  return ret;
}

// modpow for mod < 2 ^ 31
long long modpow(long long a, long long n, long long mod) {
  a %= mod;
  long long ret = 1;
  while (n > 0) {
    if (n & 1) ret = ret * a % mod;
    a = a * a % mod;
    n >>= 1;
  }
  return ret % mod;
};

// Check if r is Primitive Root
bool isPrimitiveRoot(long long r, long long mod) {
  r %= mod;
  if (r == 0) return false;
  auto pf = PrimeFactors(mod - 1);
  for (auto &x : pf) {
    if (modpow(r, (mod - 1) / x.first, mod) == 1) return false;
  }
  return true;
}

// Get Primitive Root
long long PrimitiveRoot(long long mod) {
  long long ret = 1;
  while (isPrimitiveRoot(ret, mod) == false) ret++;
  return ret;
}

// Extended Euclidean algorithm
// solve : ax + by = gcd(a, b)
long long extgcd(long long a, long long b, long long &x, long long &y) {
  if (b == 0) {
    x = 1;
    y = 0;
    return a;
  }
  long long d = extgcd(b, a % b, y, x);
  y -= a / b * x;
  return d;
}

// Check if n is Square Number
bool isSquare(ll n) {
  if(n == 0 || n == 1) return true;
  ll d = (ll)sqrt(n) - 1;
  while (d * d < n) ++d;
  return d * d == n;
}

// return a number of n's digit
// zero ... return value if n = 0 (default -> 1)
int isDigit(ll n, int zero = 1) {
  if (n == 0) return zero;
  int ret = 0;
  while (n) {
    n /= 10;
    ret++;
  }
  return ret;
}

void solve(){
  inl(N);
  cominit(N+10);
  auto ds = Divisor(N);
  sort(all(ds));

  vm dp(N+1);
  each(x,ds){
    if(x == 1) dp[x] = 0;
    else dp[x] = x * fac[x - 2];
    each(y , ds){
      if(y >= x) break;
      if(x % y == 0){
        dp[x] += dp[y].pow(x/y) * dp[x/y];
      }
    }
  }
  trc(dp);
  out(dp[N]);
}
0