結果
問題 | No.1039 Project Euler でやれ |
ユーザー | LayCurse |
提出日時 | 2020-04-24 23:15:47 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 29 ms / 2,000 ms |
コード長 | 12,965 bytes |
コンパイル時間 | 3,896 ms |
コンパイル使用メモリ | 254,156 KB |
実行使用メモリ | 22,912 KB |
最終ジャッジ日時 | 2024-11-08 02:59:27 |
合計ジャッジ時間 | 4,903 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 17 ms
16,640 KB |
testcase_01 | AC | 22 ms
19,328 KB |
testcase_02 | AC | 24 ms
20,864 KB |
testcase_03 | AC | 29 ms
22,912 KB |
testcase_04 | AC | 29 ms
22,912 KB |
testcase_05 | AC | 25 ms
21,248 KB |
testcase_06 | AC | 23 ms
19,712 KB |
testcase_07 | AC | 16 ms
15,744 KB |
testcase_08 | AC | 18 ms
16,896 KB |
testcase_09 | AC | 20 ms
18,304 KB |
testcase_10 | AC | 15 ms
15,744 KB |
testcase_11 | AC | 23 ms
19,840 KB |
testcase_12 | AC | 17 ms
16,384 KB |
testcase_13 | AC | 14 ms
15,232 KB |
testcase_14 | AC | 21 ms
18,304 KB |
testcase_15 | AC | 22 ms
19,200 KB |
testcase_16 | AC | 14 ms
15,232 KB |
testcase_17 | AC | 14 ms
15,232 KB |
testcase_18 | AC | 14 ms
15,232 KB |
testcase_19 | AC | 14 ms
15,104 KB |
コンパイルメッセージ
In member function 'T Comb<T>::fac(int) [with T = Modint]', inlined from 'int main()' at main.cpp:629:14: main.cpp:396:18: warning: 'c.Comb<Modint>::factri' may be used uninitialized [-Wmaybe-uninitialized] 396 | return factri[k]; | ~~~~~~^ main.cpp: In function 'int main()': main.cpp:621:16: note: 'c.Comb<Modint>::factri' was declared here 621 | Comb<Modint> c; | ^
ソースコード
#pragma GCC optimize ("Ofast") #include<bits/stdc++.h> using namespace std; #define MD (1000000007U) void *wmem; char memarr[96000000]; template<class S, class T> inline S min_L(S a,T b){ return a<=b?a:b; } template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){ static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}; (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] ); (*arr)=(T*)(*mem); (*mem)=((*arr)+x); } struct Modint{ unsigned val; Modint(){ val=0; } Modint(int a){ val = ord(a); } Modint(unsigned a){ val = ord(a); } Modint(long long a){ val = ord(a); } Modint(unsigned long long a){ val = ord(a); } inline unsigned ord(unsigned a){ return a%MD; } inline unsigned ord(int a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned ord(unsigned long long a){ return a%MD; } inline unsigned ord(long long a){ a %= (int)MD; if(a < 0){ a += MD; } return a; } inline unsigned get(){ return val; } inline Modint &operator+=(Modint a){ val += a.val; if(val >= MD){ val -= MD; } return *this; } inline Modint &operator-=(Modint a){ if(val < a.val){ val = val + MD - a.val; } else{ val -= a.val; } return *this; } inline Modint &operator*=(Modint a){ val = ((unsigned long long)val*a.val)%MD; return *this; } inline Modint &operator/=(Modint a){ return *this *= a.inverse(); } inline Modint operator+(Modint a){ return Modint(*this)+=a; } inline Modint operator-(Modint a){ return Modint(*this)-=a; } inline Modint operator*(Modint a){ return Modint(*this)*=a; } inline Modint operator/(Modint a){ return Modint(*this)/=a; } inline Modint operator+(int a){ return Modint(*this)+=Modint(a); } inline Modint operator-(int a){ return Modint(*this)-=Modint(a); } inline Modint operator*(int a){ return Modint(*this)*=Modint(a); } inline Modint operator/(int a){ return Modint(*this)/=Modint(a); } inline Modint operator+(long long a){ return Modint(*this)+=Modint(a); } inline Modint operator-(long long a){ return Modint(*this)-=Modint(a); } inline Modint operator*(long long a){ return Modint(*this)*=Modint(a); } inline Modint operator/(long long a){ return Modint(*this)/=Modint(a); } inline Modint operator-(void){ Modint res; if(val){ res.val=MD-val; } else{ res.val=0; } return res; } inline operator bool(void){ return val!=0; } inline operator int(void){ return get(); } inline operator long long(void){ return get(); } inline Modint inverse(){ int a = val; int b = MD; int u = 1; int v = 0; int t; Modint res; while(b){ t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } if(u < 0){ u += MD; } res.val = u; return res; } inline Modint pw(unsigned long long b){ Modint a(*this); Modint res; res.val = 1; while(b){ if(b&1){ res *= a; } b >>= 1; a *= a; } return res; } inline bool operator==(int a){ return ord(a)==val; } inline bool operator!=(int a){ return ord(a)!=val; } } ; inline Modint operator+(int a, Modint b){ return Modint(a)+=b; } inline Modint operator-(int a, Modint b){ return Modint(a)-=b; } inline Modint operator*(int a, Modint b){ return Modint(a)*=b; } inline Modint operator/(int a, Modint b){ return Modint(a)/=b; } inline Modint operator+(long long a, Modint b){ return Modint(a)+=b; } inline Modint operator-(long long a, Modint b){ return Modint(a)-=b; } inline Modint operator*(long long a, Modint b){ return Modint(a)*=b; } inline Modint operator/(long long a, Modint b){ return Modint(a)/=b; } inline int my_getchar_unlocked(){ static char buf[1048576]; static int s = 1048576; static int e = 1048576; if(s == e && e == 1048576){ e = fread_unlocked(buf, 1, 1048576, stdin); s = 0; } if(s == e){ return EOF; } return buf[s++]; } inline void rd(int &x){ int k; int m=0; x=0; for(;;){ k = my_getchar_unlocked(); if(k=='-'){ m=1; break; } if('0'<=k&&k<='9'){ x=k-'0'; break; } } for(;;){ k = my_getchar_unlocked(); if(k<'0'||k>'9'){ break; } x=x*10+k-'0'; } if(m){ x=-x; } } struct MY_WRITER{ char buf[1048576]; int s; int e; MY_WRITER(){ s = 0; e = 1048576; } ~MY_WRITER(){ if(s){ fwrite_unlocked(buf, 1, s, stdout); } } } ; MY_WRITER MY_WRITER_VAR; void my_putchar_unlocked(int a){ if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){ fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout); MY_WRITER_VAR.s = 0; } MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a; } inline void wt_L(char a){ my_putchar_unlocked(a); } inline void wt_L(int x){ int s=0; int m=0; char f[10]; if(x<0){ m=1; x=-x; } while(x){ f[s++]=x%10; x/=10; } if(!s){ f[s++]=0; } if(m){ my_putchar_unlocked('-'); } while(s--){ my_putchar_unlocked(f[s]+'0'); } } inline void wt_L(Modint x){ int i; i = (int)x; wt_L(i); } template<class T> int Factor_L(T N, T fac[], int fs[]){ T i; int sz = 0; if(N%2==0){ fac[sz] = 2; fs[sz] = 1; N /= 2; while(N%2==0){ N /= 2; fs[sz]++; } sz++; } for(i=3;i*i<=N;i+=2){ if(N%i==0){ fac[sz] = i; fs[sz] = 1; N /= i; while(N%i==0){ N /= i; fs[sz]++; } sz++; } } if(N > 1){ fac[sz] = N; fs[sz] = 1; sz++; } return sz; } template<class T, class S> inline T pow_L(T a, S b){ T res = 1; res = 1; for(;;){ if(b&1){ res *= a; } b >>= 1; if(b==0){ break; } a *= a; } return res; } inline double pow_L(double a, double b){ return pow(a,b); } template<class S, class T> inline S chmin(S &a, T b){ if(a>b){ a=b; } return a; } template<class S, class T> inline S chmax(S &a, T b){ if(a<b){ a=b; } return a; } template<class T> struct Comb{ int mem_fact; T *factri; T *ifactri; Comb(){ mem_fact = 0; } inline void expand_fact(int k){ if(k <= mem_fact){ return; } chmax(k, 2* mem_fact); if(mem_fact == 0){ int i; factri = (T*)malloc(k * sizeof(T)); ifactri = (T*)malloc(k * sizeof(T)); factri[0] = 1; for(i=(1);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(0);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } else{ int i; factri = (T*)realloc(factri, k * sizeof(T)); ifactri = (T*)realloc(ifactri, k * sizeof(T)); for(i=(mem_fact);i<(k);i++){ factri[i] = i * factri[i-1]; } ifactri[k-1] = 1 / factri[k-1]; for(i=(k-1)-1;i>=(mem_fact);i--){ ifactri[i] = (i+1) * ifactri[i+1]; } } mem_fact = k; } inline T fac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return factri[k]; } inline T ifac(int k){ if(mem_fact < k+1){ expand_fact(k+1); } return ifactri[k]; } inline T C(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[b] * ifactri[a-b]; } inline T P(int a, int b){ if(b < 0 || b > a){ return 0; } if(mem_fact < a+1){ expand_fact(a+1); } return factri[a] * ifactri[a-b]; } inline T H(int a, int b){ if(a==0 && b==0){ return 1; } if(a <= 0 || b < 0){ return 0; } if(mem_fact < a+b){ expand_fact(a+b); } return C(a+b-1, b); } inline T Multinomial(int sz, int a[]){ int i; int s = 0; T res; for(i=(0);i<(sz);i++){ s += a[i]; } if(mem_fact < s+1){ expand_fact(s+1); } res = factri[s]; for(i=(0);i<(sz);i++){ res *= ifactri[a[i]]; } return 1; } inline T Multinomial(int a){ return 1; } inline T Multinomial(int a, int b){ if(mem_fact < a+b+1){ expand_fact(a+b+1); } return factri[a+b] * ifactri[a] * ifactri[b]; } inline T Multinomial(int a, int b, int c){ if(mem_fact < a+b+c+1){ expand_fact(a+b+c+1); } return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c]; } inline T Multinomial(int a, int b, int c, int d){ if(mem_fact < a+b+c+d+1){ expand_fact(a+b+c+d+1); } return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d]; } inline T Catalan(int n){ if(n < 0){ return 0; } if(mem_fact < 2*n+1){ expand_fact(2*n+1); } return factri[2*n] * ifactri[n] * ifactri[n+1]; } inline T C_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } if(b > a - b){ b = a - b; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; res /= i + 1; } return res; } inline T P_s(long long a, long long b){ long long i; T res; if(b < 0 || b > a){ return 0; } res = 1; for(i=(0);i<(b);i++){ res *= a - i; } return res; } inline T per_s(long long n, long long k){ T d; int m; if(n < 0 || k < 0){ return 0; } if(n == k && k == 0){ return 1; } if(n == 0 || k == 0){ return 0; } if(k==1){ return 1; } if(k==2){ d = n / 2; return d; } if(k==3){ d = (n-1) / 6; m = (n-1) % 6; if(m==0){ return 3 * d * d + d; } if(m==1){ return 3 * d * d + 2 * d; } if(m==2){ return 3 * d * d + 3 * d + 1; } if(m==3){ return 3 * d * d + 4 * d + 1; } if(m==4){ return 3 * d * d + 5 * d + 2; } if(m==5){ return 3 * d * d + 6 * d + 3; } } assert(0 && "per_s should be k <= 3"); return -1; } } ; int M; int fs; int f[30]; int fn[30]; int p; int n[30]; int k[30]; Modint arr[30][100000]; int sz[30]; int cur; void solve(int dep, int prem, int mx){ long long m; int i; int j; Modint res; Modint t1; Modint t2; Modint t3; Modint pp; if(prem==0){ res = 1; pp = p; for(i=(0);i<(dep);i++){ t1 =(pow_L(pp,((n[i] - 1) * k[i] * k[i]))); t2 = t3 = 1; for(j=(0);j<(k[i]);j++){ t2 *= ((pow_L(p,k[i]))) - ((pow_L(p,j))); } for(j=(0);j<(dep);j++){ if(j!=i){ t3 *=(pow_L(p,(min_L(n[i], n[j])* k[j] ))); } } (t3 = pow_L(t3,k[i])); res *= t1 * t2 * t3; } arr[cur][sz[cur]++] = res; } chmin(mx, prem); for(i=(1);i<(mx+1);i++){ for(j=1;;j++){ if(i*j > prem){ break; } n[dep] = i; k[dep] = j; solve(dep+1, prem-i*j, i-1); } } } Modint fct; Modint solve2(int dep, Modint now){ int i; Modint res = 0; if(dep==fs){ res += fct / now; return res; } for(i=(0);i<(sz[dep]);i++){ res += solve2(dep+1, now * arr[dep][i]); } return res; } int main(){ int i; wmem = memarr; Modint res; Comb<Modint> c; rd(M); fs =Factor_L(M, f, fn); for(i=(0);i<(fs);i++){ p = f[i]; cur = i; solve(0, fn[i], fn[i]); } fct = c.fac(M); res = solve2(0, 1); wt_L(res); wt_L('\n'); return 0; } // cLay varsion 20200419-1 // --- original code --- // int M; // int fs, f[30], fn[30]; // // int p, n[30], k[30]; // Modint arr[30][100000]; int sz[30], cur; // // void solve(int dep, int prem, int mx){ // ll m; // int i, j; // Modint res, t1, t2, t3, pp; // // if(prem==0){ // res = 1; // pp = p; // rep(i,dep){ // t1 = pp ** ((n[i] - 1) * k[i] * k[i]); // t2 = t3 = 1; // rep(j,k[i]) t2 *= (p ** k[i]) - (p ** j); // rep(j,dep) if(j!=i) t3 *= p ** ( min(n[i], n[j]) * k[j] ); // t3 **= k[i]; // res *= t1 * t2 * t3; // } // // rep(i,dep) wt(i, n[i], k[i]); // arr[cur][sz[cur]++] = res; // } // // mx <?= prem; // rep(i,1,mx+1){ // for(j=1;;j++){ // if(i*j > prem) break; // n[dep] = i; // k[dep] = j; // solve(dep+1, prem-i*j, i-1); // } // } // } // // Modint fct; // Modint solve2(int dep, Modint now){ // Modint res = 0; // if(dep==fs){ // res += fct / now; // return res; // } // rep(i,sz[dep]) res += solve2(dep+1, now * arr[dep][i]); // return res; // } // // { // Modint res; // Comb<Modint> c; // rd(M); // // fs = Factor(M, f, fn); // rep(i,fs){ // p = f[i]; // cur = i; // solve(0, fn[i], fn[i]); // } // // fct = c.fac(M); // res = solve2(0, 1); // // wt(res); // }