結果

問題 No.1069 電柱 / Pole (Hard)
ユーザー nullnull
提出日時 2020-04-26 19:58:39
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 6,769 bytes
コンパイル時間 3,263 ms
コンパイル使用メモリ 193,672 KB
実行使用メモリ 43,684 KB
最終ジャッジ日時 2024-11-06 12:02:20
合計ジャッジ時間 6,772 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,764 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 TLE -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
testcase_59 -- -
testcase_60 -- -
testcase_61 -- -
testcase_62 -- -
testcase_63 -- -
testcase_64 -- -
testcase_65 -- -
testcase_66 -- -
testcase_67 -- -
testcase_68 -- -
testcase_69 -- -
testcase_70 -- -
testcase_71 -- -
testcase_72 -- -
testcase_73 -- -
testcase_74 -- -
testcase_75 -- -
testcase_76 -- -
testcase_77 -- -
testcase_78 -- -
testcase_79 -- -
testcase_80 -- -
testcase_81 -- -
testcase_82 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
このコード、と~おれ!
Be accepted!
∧_∧ 
(。・ω・。)つ━☆・*。
⊂   ノ    ・゜+.
 しーJ   °。+ *´¨)
          .· ´¸.·*´¨) ¸.·*¨)
		            (¸.·´ (¸.·'* ☆
*/

#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
/*多倍長整数/cpp_intで宣言
#include <boost/multiprecision/cpp_int.hpp>
using namespace boost::multiprecision;
*/

//#pragma gcc target ("avx2")
//#pragma gcc optimization ("o3")
//#pragma gcc optimization ("unroll-loops")
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define rep1(i, n) for(int i = 1; i <= (n); ++i)
#define rep2(i, n) for(int i = 2; i < (n); ++i)
#define repr(i, n) for(int i = n; i >= 0; --i)
#define reprm(i, n) for(int i = n - 1; i >= 0; --i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a) //少数出力
#define printLdb(a) printf("%.50Lf\n", a) //少数出力
#define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ)
#define prints(s) printf("%s\n", s.c_str()) //string出力
#define all(x) (x).begin(), (x).end()
#define allsum(a, b, c) ((a + b) * c / 2LL) //等差数列の和、初項,末項,項数
#define pb push_back
#define rpriq priq<int, vector<int>, greater<int>>
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */


using ll = long long;

constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1000000007;
const long double PI = acosl(-1.0L);

using namespace std;

void scans(string& str) {
	char c;
	str = "";
	scanf("%c", &c);
	if (c == '\n')scanf("%c", &c);
	while (c != '\n' && c != -1 && c != ' ') {
		str += c;
		scanf("%c", &c);
	}
}

void scanc(char& str) {
	char c;
	scanf("%c", &c);
	if (c == -1)return;
	while (c == '\n') {
		scanf("%c", &c);
	}
	str = c;
}

double acot(double x) {
	return PI / 2 - atan(x);
}

ll LSB(ll n) { return (n & (-n)); }

/*-----------------------------------------ここからコード-----------------------------------------*/
template<typename T>
vector<T> dijkstra(const vector<vector<pair<int, T>>>& graph, vector<int>& path, const int& v, const int& g, const int& n, const T inf, const vector<vector<bool>>& deleted, set<int> r) {
	priority_queue<pair<T, int>, vector<pair<T, int>>, greater<pair<T, int>>> priq;
	vector<T> res(n);
	vector<int> prev(n);
	fill(all(prev), -1);
	fill(all(res), inf);
	priq.push({ 0, v });
	res[v] = 0;
	int top;
	while (!priq.empty()) {
		top = priq.top().second;
		priq.pop();
		for (const auto& aa : graph[top]) {
			if (res[top] + aa.second >= res[aa.first] or deleted[top][aa.first] or r.find(aa.first) != r.end())continue;
			res[aa.first] = aa.second + res[top];
			prev[aa.first] = top;
			priq.push({ res[aa.first], aa.first });
			r.insert(aa.first);
		}
	}

	for (int i = g; i != -1; i = prev[i])path.push_back(i);
	reverse(all(path));

	return res;
}

int main() {

	int n, m, k, x, y;
	scanf("%d%d%d%d%d", &n, &m, &k, &x, &y);
	--x; --y;
	vector<vector<pair<int, long double>>> graph(n);
	vector<pair<int, int>> xy(n);
	int p, q;
	rep(i, n) {
		scanf("%d%d", &p, &q);
		xy[i] = { p, q };
	}
	rep(i, m) {
		scanf("%d%d", &p, &q);
		--p; --q;
		long double a = xy[p].first, b = xy[p].second, c = xy[q].first, d = xy[q].second;
		graph[p].push_back({ q, sqrt((c - a) * (c - a) + (d - b) * (d - b)) });
		graph[q].push_back({ p, sqrt((c - a) * (c - a) + (d - b) * (d - b)) });
	}
	vector<vector<int>> path(k);
	vector<long double> ans(k), res, anstmp;
	vector<vector<bool>> deleted(n, vector<bool>(n));
	res = dijkstra<long double>(graph, path[0], x, y, n, numeric_limits<long double>::infinity(), deleted, {});
	ans[0] = res[y];
	anstmp = res;
	auto func = [](const tuple<long double, vector<int>, vector<long double>>& a, const tuple<long double, vector<int>, vector<long double>>& b) -> bool {
		if (get<0>(a) != get<0>(b))return get<0>(a) > get<0>(b);
		else if (get<1>(a) != get<1>(b))return get<1>(a) > get<1>(b);
		else return get<2>(a) > get<2>(b);
	};
	priority_queue<tuple<long double, vector<int>, vector<long double>>, vector<tuple<long double, vector<int>, vector<long double>>>, decltype(func)> priq{ func };
	map<vector<int>, vector<int>> spurnode;
	rep(i, k - 1) {
		int siz = path[i].size();
		vector<int> route;
		set<int> r;
		long double cost = 0;
		rep(j, siz - 1) {
			route.push_back(path[i][j]);
			r.insert(path[i][j]);
			spurnode[route].push_back(path[i][j + 1]);
			if (j != 0) {
				for (const auto& aa : graph[path[i][j]]) {
					if (aa.first == path[i][j + 1]) {
						cost += aa.second;
						break;
					}
				}
			}
			for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = true;
			if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = true;
			res = dijkstra<long double>(graph, path[i + 1], path[i][j], y, n, numeric_limits<long double>::infinity(), deleted, r);
			if (j > 0)deleted[path[i][j - 1]][path[i][j]] = deleted[path[i][j]][path[i][j - 1]] = false;
			for (const auto& aa : spurnode[route])deleted[path[i][j]][aa] = deleted[aa][path[i][j]] = false;
			if (res[y] == numeric_limits<long double>::infinity())continue;
			vector<int> tmp;
			vector<long double> tmp2(n);
			for (int l = 0; l <= j; ++l) {
				tmp2[path[i][l]] = anstmp[path[i][l]];
			}
			int l = 0;
			for (; path[i][l] != path[i][j]; ++l) {
				tmp2[path[i][l]] = anstmp[path[i][l]];
				tmp.push_back(path[i][l]);
			}
			for (l = 0; path[i + 1][l] != y; ++l) { 
				tmp2[path[i + 1][l]] = res[path[i + 1][l]];
				tmp.push_back(path[i + 1][l]);
			}
			tmp.push_back(y);
			int siz2 = path[i + 1].size();
			for (int l = 1; l < siz2; ++l) tmp2[path[i + 1][l]] = res[path[i + 1][l]] + anstmp[path[i][j]];
			priq.push(make_tuple(cost + res[y], tmp, tmp2));
		}
		if (priq.empty()) {
			for (; i < k - 1; ++i)ans[i + 1] = -1;
			break;
		}
		auto tmp = priq.top();
		priq.pop();
		path[i + 1] = get<1>(tmp);
		ans[i + 1] = get<0>(tmp);
		//anstmp = get<2>(tmp);
   	}
	rep(i, k)printLdb(ans[i]);

	Please AC;
}
0