結果
問題 | No.848 なかよし旅行 |
ユーザー | Mister |
提出日時 | 2020-04-27 18:16:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 113 ms / 2,000 ms |
コード長 | 2,599 bytes |
コンパイル時間 | 1,127 ms |
コンパイル使用メモリ | 86,976 KB |
最終ジャッジ日時 | 2025-01-10 02:31:07 |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
ソースコード
#include <iostream> #include <vector> #include <queue> #include <tuple> #include <limits> template <class T> using MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <class Cost = int> struct Edge { int src, dst; Cost cost; Edge(int src = -1, int dst = -1, Cost cost = 1) : src(src), dst(dst), cost(cost){}; bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; } bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; } }; template <class Cost = int> struct Graph { std::vector<std::vector<Edge<Cost>>> graph; Graph(int n = 0) : graph(n) {} void span(bool direct, int src, int dst, Cost cost = 1) { graph[src].emplace_back(src, dst, cost); if (!direct) graph[dst].emplace_back(dst, src, cost); } std::vector<Edge<Cost>>& operator[](int v) { return graph[v]; } std::vector<Edge<Cost>> operator[](int v) const { return graph[v]; } int size() const { return graph.size(); } }; template <class Cost> std::vector<Cost> dijkstra(const Graph<Cost>& graph, int s) { constexpr Cost INF = std::numeric_limits<Cost>::max() / 10; std::vector<Cost> dist(graph.size(), INF); dist[s] = 0; MinHeap<std::pair<Cost, int>> que; que.emplace(0, s); while (!que.empty()) { int v; Cost d; std::tie(d, v) = que.top(); que.pop(); if (d > dist[v]) continue; for (const auto& e : graph[v]) { if (dist[e.dst] <= dist[v] + e.cost) continue; dist[e.dst] = dist[v] + e.cost; que.emplace(dist[e.dst], e.dst); } } return dist; } using lint = long long; void solve() { int n, m, p, q; lint t; std::cin >> n >> m >> p >> q >> t; --p, --q; Graph<lint> graph(n); while (m--) { int u, v; lint c; std::cin >> u >> v >> c; graph.span(false, --u, --v, c); } auto ds0 = dijkstra(graph, 0), dsp = dijkstra(graph, p), dsq = dijkstra(graph, q); lint ans = t + 1; if (ds0[p] + dsp[q] + dsq[0] <= t) ans = 0; for (int u = 0; u < n; ++u) { for (int v = 0; v < n; ++v) { lint pcost = std::max(dsp[u] + dsp[v], dsq[u] + dsq[v]); lint tcost = ds0[u] + ds0[v]; if (pcost + tcost > t) continue; ans = std::min(ans, pcost); } } std::cout << t - ans << std::endl; } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; }