結果
| 問題 | No.8030 ミラー・ラビン素数判定法のテスト |
| ユーザー |
aajisaka
|
| 提出日時 | 2020-04-29 18:13:02 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,045 bytes |
| 記録 | |
| コンパイル時間 | 2,795 ms |
| コンパイル使用メモリ | 203,384 KB |
| 最終ジャッジ日時 | 2025-01-10 03:27:37 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
/**
* code generated by JHelper
* More info: https://github.com/AlexeyDmitriev/JHelper
* @author aajisaka
*/
#include<bits/stdc++.h>
using namespace std;
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
#ifdef LOCAL
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
#define SPEED ios_base::sync_with_stdio(false);cin.tie(nullptr)
#define rep(i,n) for(int i=0; i<(int)(n); i++)
#define all(v) v.begin(), v.end()
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; }
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; }
using ll = long long;
using ull = unsigned long long;
using P = pair<ll, ll>;
constexpr long double PI = 3.14159265358979323846264338327950288L;
mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count());
constexpr ll mod17 = 1e9+7;
constexpr ll mod19 = 1e9+9;
constexpr ll mod9 = 998244353;
ll mod = mod17;
// Mod int libraries
template<typename T>
T mod_pow(T a, ll x) {
T res = 1;
while(x > 0) {
if (x & 1) res *= a;
a *= a; x >>= 1;
}
return res;
}
// Mint32
unordered_map<ll, ll> minvmap;
ll minv(ll a, ll m) {
auto k = a; auto p = minvmap[a]; if (p != 0) return p;
ll b = m, u = 1, v = 0;
while (b) { ll t = a/b; swap(a -= t*b, b); swap(u -= t*v, v); }
p = (u%m+m)%m; minvmap[k] = p; return p;
}
struct mint {
ll x;
mint():x(0){}
mint(ll x):x((x%mod+mod)%mod){}
mint& fix() { x = (x%mod+mod)%mod; return *this;}
mint operator-() const { return mint(0) - *this;}
mint& operator+=(const mint& a){ if((x+=a.x)>=mod) x-=mod; return *this;}
mint& operator-=(const mint& a){ if((x+=mod-a.x)>=mod) x-=mod; return *this;}
mint& operator*=(const mint& a){ (x*=a.x)%=mod; return *this;}
mint& operator/=(const mint& a){ (x*=minv(a.x, mod))%=mod; return *this; }
mint operator+(const mint& a)const{ return mint(*this) += a;}
mint operator-(const mint& a)const{ return mint(*this) -= a;}
mint operator*(const mint& a)const{ return mint(*this) *= a;}
mint operator/(const mint& a)const{ return mint(*this) /= a;}
bool operator<(const mint& a)const{ return x < a.x;}
bool operator==(const mint& a)const{ return x == a.x;}
};
// Mint64
struct mint64 {
ull x;
static ull mod, inv, r2;
mint64(): x(0){}
mint64(ull x): x(init(x)) {}
static ull init(ull x) { return reduce(__uint128_t(x)*r2);}
static void set_mod(ull m) {
mod = inv = m;
for(int i=0; i<5; i++) inv *= 2 - inv*m;
r2 = -__uint128_t(m)%m;
}
static ull reduce(__uint128_t x) {
ull y = ull(x >> 64) - ull((__uint128_t(ull(x)*inv)*mod)>>64);
return ll(y) < 0 ? y+mod : y;
}
mint64& operator+=(mint64& a) { x+=a.x-mod; if(ll(x)<0) x+=mod; return *this; }
mint64 operator+(mint64& a) const{ return mint64(*this)+=a; }
mint64& operator*=(mint64& a) { x=reduce(__uint128_t(x)*a.x); return *this; }
mint64 operator*(mint64& a) const { return mint64(*this)*=a; }
};
ull mint64::mod, mint64::inv, mint64::r2;
struct Miller {
const vector<ull> v = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
bool suspect(ull a, ull s, ull d, ull n) {
if (mint64::mod != n) mint64::set_mod(n);
auto ma = mint64(a);
auto x = mod_pow(ma, d);
if (x.x == 1) return true;
for(int r = 0; r < s; r++) {
if (x.x == n-1) return true;
x = x * x;
}
return false;
}
// check if n is prime
bool check(ull n) {
if (n < 2 || (n > 2 && n % 2 == 0)) return false;
ull d = n - 1;
ull s = 0;
while (!(d & 1)) {
d >>= 1;
s++;
}
for (auto a: v) {
if (a >= n) break;
if (!suspect(a, s, d, n)) return false;
}
return true;
}
};
class combination {
// factorial
public: std::vector<mint> fact;
public: std::vector<mint> inv;
combination(int n) {
fact.resize(n + 1);
inv.resize(n + 1);
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = fact[i - 1] * i;
}
inv[n] = mint(1) / fact[n];
for (int i = n - 1; i >= 0; i--) {
inv[i] = inv[i + 1] * (i + 1);
}
}
// nCr
public: mint get(int n, int r) {
if (n < r || n < 0 || r < 0) return 0;
return fact[n]*inv[r]*inv[n-r];
}
// nPr
public: mint p(int n, int r) {
if (n < r || n < 0) return 0;
return fact[n]*inv[n-r];
}
};
class TestMillerRabin {
public:
void solve(istream& cin, ostream& cout) {
SPEED;
int n; cin >> n;
Miller miller;
while(n--) {
ll p; cin >> p;
cout << p << ' ';
cout << (miller.check(p) ? 1 : 0) << '\n';
}
}
};
signed main() {
TestMillerRabin solver;
std::istream& in(std::cin);
std::ostream& out(std::cout);
solver.solve(in, out);
return 0;
}
aajisaka