結果
問題 | No.1043 直列大学 |
ユーザー | hirono999 |
提出日時 | 2020-05-01 22:09:48 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 168 ms / 2,000 ms |
コード長 | 6,225 bytes |
コンパイル時間 | 2,233 ms |
コンパイル使用メモリ | 211,672 KB |
実行使用メモリ | 164,016 KB |
最終ジャッジ日時 | 2024-06-02 02:53:07 |
合計ジャッジ時間 | 5,855 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 12 ms
10,768 KB |
testcase_01 | AC | 7 ms
9,212 KB |
testcase_02 | AC | 24 ms
15,424 KB |
testcase_03 | AC | 8 ms
9,208 KB |
testcase_04 | AC | 8 ms
9,212 KB |
testcase_05 | AC | 18 ms
9,216 KB |
testcase_06 | AC | 18 ms
9,212 KB |
testcase_07 | AC | 11 ms
12,316 KB |
testcase_08 | AC | 21 ms
12,316 KB |
testcase_09 | AC | 94 ms
85,904 KB |
testcase_10 | AC | 110 ms
101,572 KB |
testcase_11 | AC | 145 ms
150,916 KB |
testcase_12 | AC | 168 ms
164,016 KB |
testcase_13 | AC | 133 ms
137,624 KB |
testcase_14 | AC | 139 ms
145,364 KB |
testcase_15 | AC | 152 ms
158,720 KB |
testcase_16 | AC | 136 ms
142,244 KB |
testcase_17 | AC | 107 ms
105,444 KB |
testcase_18 | AC | 108 ms
105,504 KB |
testcase_19 | AC | 129 ms
134,532 KB |
testcase_20 | AC | 104 ms
103,076 KB |
testcase_21 | AC | 118 ms
124,260 KB |
testcase_22 | AC | 122 ms
129,716 KB |
testcase_23 | AC | 151 ms
162,596 KB |
testcase_24 | AC | 110 ms
115,652 KB |
testcase_25 | AC | 129 ms
135,928 KB |
testcase_26 | AC | 139 ms
145,300 KB |
testcase_27 | AC | 79 ms
73,344 KB |
testcase_28 | AC | 135 ms
134,384 KB |
testcase_29 | AC | 51 ms
46,764 KB |
testcase_30 | AC | 104 ms
102,576 KB |
ソースコード
#include <bits/stdc++.h> const long long INF = 1LL << 60; const long long MOD = 1000000007; const double PI = acos(-1.0); #define rep(i, n) for (ll i = 0; i < (n); ++i) #define rep1(i, n) for (ll i = 1; i <= (n); ++i) #define rrep(i, n) for (ll i = (n - 1); i >= 0; --i) #define perm(c) sort(ALL(c));for(bool c##p=1;c##p;c##p=next_permutation(ALL(c))) #define ALL(obj) (obj).begin(), (obj).end() #define RALL(obj) (obj).rbegin(), (obj).rend() #define pb push_back #define to_s to_string #define len(v) (ll)v.size() #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define print(x) cout << (x) << '\n' #define drop(x) cout << (x) << '\n', exit(0) #define debug(x) cout << #x << ": " << (x) << '\n' using namespace std; using ll = long long; typedef pair<ll, ll> P; typedef vector<ll> vec; typedef vector<vector<ll>> vec2; typedef vector<vector<vector<ll>>> vec3; template<class S, class T> inline bool chmax(S &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<class S, class T> inline bool chmin(S &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } inline ll msb(ll v) { return 1 << (31 - __builtin_clzll(v)); } inline ll devc(ll x, ll y) { return (x + y - 1) / y; } inline ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } inline ll lcm(ll a, ll b) { return a * (b / gcd(a, b)); } struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator << (ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator >> (istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T1, typename T2, typename T3 > ostream &operator << (ostream &os, const tuple< T1, T2, T3 > &t) { os << get<0>(t) << " " << get<1>(t) << " " << get<2>(t); return os; } template< typename T1, typename T2, typename T3 > istream &operator >> (istream &is, tuple< T1, T2, T3 > &t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template< typename T > ostream &operator << (ostream &os, const vector< T > &v){ for (int i = 0; i < (int)v.size(); ++i) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator >> (istream &is, vector< T > &v){ for(T &in : v) is >> in; return is; } /*--------------------------------- Tools ------------------------------------------*/ template< typename T > vector<T> cumsum(const vector<T> &X){ vector<T> res(X.size() + 1, 0); for(int i = 0; i < X.size(); ++i) res[i + 1] += res[i] + X[i]; return res; } template< typename S, typename T, typename F> pair<T, T> bisearch(S left, T right, F f) { while(abs(right - left) > 1){ T mid = (right + left) / 2; if(f(mid)) right = mid; else left = mid; } return {left, right}; } template< typename S, typename T, typename F> double trisearch(S left, T right, F f, int maxLoop = 90){ double low = left, high = right; while(maxLoop--){ double mid_left = high / 3 + low * 2 / 3; double mid_right = high * 2 / 3 + low / 3; if(f(mid_left) >= f(mid_right)) low = mid_left; else high = mid_right; } return (low + high) * 0.5; } //Def of Monoid //Suppose that S is a set and ● is some binary opeartion S x S -> S //then S with ● is a monoid if it satisfies the following two: // Associativity(結合則) // For all a,b and c in S, the equation (a ● b) ● c = a ● (b ● c) holds // Identitiy element(単位元の存在) // There exisits an element e in S such that for every element a in S, // the equations e ● a = a ● e = a holds //Eample of Monoid //+, *, and, or, xor, min, max //Build O(N) //Query O(log N) //- query(a,b) : applay operation to the range [a, b) //- update(k,x) : change k-th element to x //- operator[k] : return k-th element template< typename Monoid > class SegmentTree{ private: using F = function<Monoid(Monoid, Monoid)>; long long sz; vector<Monoid> seg; const F f; const Monoid e; public: SegmentTree(long long n, const F f, const Monoid &e) : f(f), e(e){ sz = 1; while(sz < n) sz <<= 1; seg.assign(2 * sz, e); } void set(long long k, const Monoid &x){ seg[k + sz] = x; } void build() { for (long long k = sz - 1; k > 0; --k){ seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(long long k, const Monoid &x) { k += sz; seg[k] = x; while(k >>= 1) seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } Monoid query(long long a, long long b){ Monoid L = e, R = e; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1){ if(a & 1) L = f(L, seg[a++]); if(b & 1) R = f(seg[--b],R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } }; /*------------------------------- Main Code Here -----------------------------------------*/ int main() { ll N, M; cin >> N >> M; vec V(N), R(M); cin >> V >> R; ll A, B; cin >> A >> B; vec2 f(N + 1, vec(1e5 + 1, 0)); vec2 g(M + 1, vec(1e5 + 1, 0)); f[0][0] = g[0][0] = 1; rep1(i, N) rep(j, 1e5 + 1){ f[i][j] = f[i - 1][j]; if(j >= V[i - 1]) f[i][j] += f[i - 1][j - V[i - 1]], f[i][j] %= MOD; } rep1(i, M) rep(j, 1e5 + 1){ g[i][j] = g[i - 1][j]; if(j >= R[i - 1]) g[i][j] += g[i - 1][j - R[i - 1]], g[i][j] %= MOD; } SegmentTree<ll> segtree(1e5 + 10, [&](ll x, ll y){ return (x + y) % MOD; }, 0); rep(i, 1e5 + 1) segtree.set(i, f[N][i]); segtree.build(); ll ans = 0; for (ll r = 1; r <= 1e5; ++r){ ans += g[M][r] * segtree.query(A * r, min(B * r + 1, ll(1e5))); ans %= MOD; } print(ans); return 0; }