結果
| 問題 |
No.1044 正直者大学
|
| コンテスト | |
| ユーザー |
KoD
|
| 提出日時 | 2020-05-01 22:10:24 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,537 bytes |
| コンパイル時間 | 602 ms |
| コンパイル使用メモリ | 65,868 KB |
| 最終ジャッジ日時 | 2025-01-10 04:57:45 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:97:31: error: ‘uint64_t’ has not been declared
97 | constexpr modulo_int power (uint64_t exp) const {
| ^~~~~~~~
main.cpp: In instantiation of ‘class factorials<modulo_int<std::integral_constant<int, 1000000007> >, 200000>’:
main.cpp:145:28: required from here
main.cpp:124:36: error: ‘factorials<T, N>::fact’ has incomplete type
124 | std::array<value_type, size + 1> fact{};
| ^~~~
In file included from /usr/include/c++/13/bits/memory_resource.h:47,
from /usr/include/c++/13/string:58,
from /usr/include/c++/13/bits/locale_classes.h:40,
from /usr/include/c++/13/bits/ios_base.h:41,
from /usr/include/c++/13/ios:44,
from /usr/include/c++/13/ostream:40,
from /usr/include/c++/13/iostream:41,
from main.cpp:2:
/usr/include/c++/13/tuple:2019:45: note: declaration of ‘struct std::array<modulo_int<std::integral_constant<int, 1000000007> >, 200001>’
2019 | template<typename _Tp, size_t _Nm> struct array;
| ^~~~~
main.cpp:125:36: error: ‘factorials<T, N>::fact_inv’ has incomplete type
125 | std::array<value_type, size + 1> fact_inv{};
| ^~~~~~~~
/usr/include/c++/13/tuple:2019:45: note: declaration of ‘struct std::array<modulo_int<std::integral_constant<int, 1000000007> >, 200001>’
2019 | template<typename _Tp, size_t _Nm> struct array;
| ^~~~~
ソースコード
#include <iostream>
#include <algorithm>
#include <utility>
#include <vector>
#include <numeric>
template <class T, class U>
inline bool chmin(T &lhs, const U &rhs) {
if (lhs > rhs) {
lhs = rhs;
return true;
}
return false;
}
template <class T, class U>
inline bool chmax(T &lhs, const U &rhs) {
if (lhs < rhs) {
lhs = rhs;
return true;
}
return false;
}
// [l, r) from l to r
struct range {
struct itr {
int i;
constexpr itr(int i_): i(i_) { }
constexpr void operator ++ () { ++i; }
constexpr int operator * () const { return i; }
constexpr bool operator != (itr x) const { return i != x.i; }
};
const itr l, r;
constexpr range(int l_, int r_): l(l_), r(std::max(l_, r_)) { }
constexpr itr begin() const { return l; }
constexpr itr end() const { return r; }
};
// [l, r) from r to l
struct revrange {
struct itr {
int i;
constexpr itr(int i_): i(i_) { }
constexpr void operator ++ () { --i; }
constexpr int operator * () const { return i; }
constexpr bool operator != (itr x) const { return i != x.i; }
};
const itr l, r;
constexpr revrange(int l_, int r_): l(l_ - 1), r(std::max(l_, r_) - 1) { }
constexpr itr begin() const { return r; }
constexpr itr end() const { return l; }
};
template <class T>
class modulo_int {
public:
static constexpr int mod = T::value;
static_assert(mod > 0, "mod must be positive");
private:
long long value;
constexpr void normalize() {
value %= mod;
if (value < 0) value += mod;
}
public:
constexpr modulo_int(long long value_ = 0): value(value_) { normalize(); }
constexpr modulo_int operator - () const { return modulo_int(mod - value); }
constexpr modulo_int operator ~ () const { return power(mod - 2); }
constexpr long long operator () () const { return value; }
constexpr modulo_int operator + (const modulo_int &rhs) const { return modulo_int(*this) += rhs; }
constexpr modulo_int &operator += (const modulo_int &rhs) {
if ((value += rhs.value) >= mod) value -= mod;
return (*this);
}
constexpr modulo_int operator - (const modulo_int &rhs) const { return modulo_int(*this) -= rhs; }
constexpr modulo_int &operator -= (const modulo_int &rhs) {
if ((value += mod - rhs.value) >= mod) value -= mod;
return (*this);
}
constexpr modulo_int operator * (const modulo_int &rhs) const { return modulo_int(*this) *= rhs; }
constexpr modulo_int &operator *= (const modulo_int &rhs) {
(value *= rhs.value) %= mod;
return (*this);
}
constexpr modulo_int operator / (const modulo_int &rhs) const { return modulo_int(*this) /= rhs; }
constexpr modulo_int &operator /= (const modulo_int &rhs) {
return (*this) *= ~rhs;
}
constexpr bool operator == (const modulo_int &rhs) const {
return value == rhs();
}
constexpr bool operator != (const modulo_int &rhs) const {
return value != rhs();
}
constexpr modulo_int power (uint64_t exp) const {
modulo_int result(1), mult(*this);
while (exp > 0) {
if (exp & 1) result *= mult;
mult *= mult;
exp >>= 1;
}
return result;
}
friend std::istream &operator >> (std::istream &stream, modulo_int &lhs) {
stream >> lhs.value;
lhs.normalize();
return stream;
}
friend std::ostream &operator << (std::ostream &stream, const modulo_int &rhs) {
return stream << rhs.value;
}
};
template <class T, std::size_t N>
class factorials {
public:
using value_type = T;
static constexpr std::size_t size = N;
public:
std::array<value_type, size + 1> fact{};
std::array<value_type, size + 1> fact_inv{};
constexpr factorials() {
fact.front() = value_type(1);
for (std::size_t i = 1; i <= size; ++i) {
fact[i] = fact[i - 1] * value_type(i);
}
fact_inv.back() = ~fact.back();
for (std::size_t i = size; i > 0; --i) {
fact_inv[i - 1] = fact_inv[i] * value_type(i);
}
}
constexpr value_type operator () (std::size_t n, std::size_t r) const {
return fact[n] * fact_inv[n - r] * fact_inv[r];
}
};
using modint = modulo_int<std::integral_constant<int, 1000000007>>;
factorials<modint, 200000> fact;
int main() {
int N, M, K;
std::cin >> N >> M >> K;
modint ans;
for (int i: range(1, N + 1)) {
if (N + M - 2 * i >= K) {
int room = i;
int people = M - room;
if (people < 0) {
continue;
}
ans += fact(N, room) * fact(room + people - 1, room - 1);
}
}
std::cout << ans * fact.fact[N - 1] * fact.fact[M] << '\n';
return 0;
}
KoD