結果

問題 No.1043 直列大学
ユーザー polylogKpolylogK
提出日時 2020-05-01 22:25:48
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 50 ms / 2,000 ms
コード長 4,389 bytes
コンパイル時間 2,299 ms
コンパイル使用メモリ 197,352 KB
最終ジャッジ日時 2025-01-10 05:07:50
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 28
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:149:20: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<1000000007>::u64’ {aka ‘long unsigned int’} [-Wformat=]
  149 |         printf("%lld\n", ans.value());
      |                 ~~~^     ~~~~~~~~~~~
      |                    |              |
      |                    long long int  modint<1000000007>::u64 {aka long unsigned int}
      |                 %ld
main.cpp:116:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  116 |         int n, m; scanf("%d%d", &n, &m); std::vector<int> a(n), b(m);
      |                   ~~~~~^~~~~~~~~~~~~~~~
main.cpp:117:41: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  117 |         for(int i = 0; i < n; i++) scanf("%d", &a[i]);
      |                                    ~~~~~^~~~~~~~~~~~~
main.cpp:118:41: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  118 |         for(int i = 0; i < m; i++) scanf("%d", &b[i]);
      |                                    ~~~~~^~~~~~~~~~~~~
main.cpp:119:24: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  119 |         int A, B; scanf("%d%d", &A, &B);
      |                   ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std::literals::string_literals;
using i64 = std::int_fast64_t;
using std::cout;
using std::cerr;
using std::endl;
using std::cin;

template<typename T>
std::vector<T> make_v(size_t a){return std::vector<T>(a);}

template<typename T,typename... Ts>
auto make_v(size_t a,Ts... ts){
  return std::vector<decltype(make_v<T>(ts...))>(a,make_v<T>(ts...));
}

#ifndef INCLUDED_MODINT_HPP
#define INCLUDED_MODINT_HPP

#include <iostream>

template <std::uint_fast64_t Modulus>
class modint {
	using u32 = std::uint_fast32_t;
	using u64 = std::uint_fast64_t;
	using i64 = std::int_fast64_t;

	inline u64 apply(i64 x) { return (x < 0 ? x + Modulus : x); };

public:
	u64 a;
	static constexpr u64 mod = Modulus;

	constexpr modint(const i64& x = 0) noexcept: a(apply(x % (i64)Modulus)) {}

	constexpr modint operator+(const modint& rhs) const noexcept { return modint(*this) += rhs; }
	constexpr modint operator-(const modint& rhs) const noexcept { return modint(*this) -= rhs; }	
	constexpr modint operator*(const modint& rhs) const noexcept { return modint(*this) *= rhs; }
	constexpr modint operator/(const modint& rhs) const noexcept { return modint(*this) /= rhs; }
	constexpr modint operator^(const u64& k) const noexcept { return modint(*this) ^= k; }
	constexpr modint operator^(const modint& k) const noexcept { return modint(*this) ^= k.value(); }
	constexpr modint operator-() const noexcept { return modint(Modulus - a); }
	constexpr modint operator++() noexcept { return (*this) = modint(*this) + 1; }
	constexpr modint operator--() noexcept { return (*this) = modint(*this) - 1; }
	const bool operator==(const modint& rhs) const noexcept { return a == rhs.a; };
	const bool operator!=(const modint& rhs) const noexcept { return a != rhs.a; };
	const bool operator<=(const modint& rhs) const noexcept { return a <= rhs.a; };
	const bool operator>=(const modint& rhs) const noexcept { return a >= rhs.a; };
	const bool operator<(const modint& rhs) const noexcept { return a < rhs.a; };
	const bool operator>(const modint& rhs) const noexcept { return a > rhs.a; };
	constexpr modint& operator+=(const modint& rhs) noexcept {
		a += rhs.a;
		if (a >= Modulus) a -= Modulus;
		return *this;
	}
	constexpr modint& operator-=(const modint& rhs) noexcept {
		if (a < rhs.a) a += Modulus;
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint& rhs) noexcept {
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept {
		u64 exp = Modulus - 2;
		while (exp) {
			if (exp % 2) (*this) *= rhs;
			
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
	constexpr modint& operator^=(u64 k) noexcept {
		auto b = modint(1);
		while(k) {
			if(k & 1) b = b * (*this);
			(*this) *= (*this);
			k >>= 1;
		}
		return (*this) = b;
	}
	constexpr modint& operator=(const modint& rhs) noexcept {
		a = rhs.a;
		return (*this);
	}

	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }
	explicit operator bool() const { return a; }
	explicit operator u32() const { return a; }

	const modint inverse() const {
		return modint(1) / *this;
	}
	const modint pow(i64 k) const {
		return modint(*this) ^ k;
	}

	friend std::ostream& operator<<(std::ostream& os, const modint& p) {
		return os << p.a;
	}
	friend std::istream& operator>>(std::istream& is, modint& p) {
		u64 t;
		is >> t;
		p = modint(t);
		return is;
	}
};

#endif
using mint = modint<1000000007>;

int main() {
	int n, m; scanf("%d%d", &n, &m); std::vector<int> a(n), b(m);
	for(int i = 0; i < n; i++) scanf("%d", &a[i]);
	for(int i = 0; i < m; i++) scanf("%d", &b[i]);
	int A, B; scanf("%d%d", &A, &B);

	std::vector<mint> x(1e5 + 1), y(1e5 + 1); x[0] = y[0] = 1;
	for(int l = 0; l < 2; l++) {
		for(int i = 0; i < a.size(); i++) {
			std::vector<mint> nxt(x);

			for(int j = 0; j < x.size(); j++) {
				if(j + a[i] >= x.size()) continue;
			
				nxt[j + a[i]] += x[j];
			}
			x.swap(nxt);
		}

		a.swap(b);
		x.swap(y);
	}

	std::vector<mint> s(x.size() + 1);
	for(int i = 0; i < x.size(); i++) s[i + 1] = s[i] + x[i];

	mint ans = 0;
	for(i64 i = 1; i < y.size(); i++) {
		int L = std::min((i64)x.size() - 1, i * (i64)A);
		int R = std::min((i64)x.size() - 1, i * (i64)B) + 1;
		if(1e5 < i * A) continue;

		ans += (s[R] - s[L]) * y[i];
	}
	printf("%lld\n", ans.value());
	return 0;
}
0