結果
| 問題 | 
                            No.283 スライドパズルと魔方陣
                             | 
                    
| コンテスト | |
| ユーザー | 
                             maspy
                         | 
                    
| 提出日時 | 2020-05-03 15:51:14 | 
| 言語 | Python3  (3.13.1 + numpy 2.2.1 + scipy 1.14.1)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,143 bytes | 
| コンパイル時間 | 361 ms | 
| コンパイル使用メモリ | 13,056 KB | 
| 実行使用メモリ | 45,040 KB | 
| 最終ジャッジ日時 | 2024-06-12 19:48:49 | 
| 合計ジャッジ時間 | 26,362 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 23 WA * 12 RE * 4 | 
ソースコード
import sys
import numpy as np
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
def f(N):
    if N % 4 == 0:
        return f0(N)
    elif N % 4 == 2:
        return f2(N)
    else:
        return f13(N)
def f13(N):
    A = np.zeros((N, N), np.int32)
    x = 0
    y = N // 2
    for i in range(1, N * N + 1):
        if A[x][y]:
            x += 2
            y -= 1
            x %= N
            y %= N
        A[x, y] = i
        x -= 1
        y += 1
        x %= N
        y %= N
    return A
def f0(N):
    A = np.arange(N * N).reshape(N, N)
    A[1::4, 0::4] *= -1
    A[1::4, 3::4] *= -1
    A[2::4, 0::4] *= -1
    A[2::4, 3::4] *= -1
    A[0::4, 1::4] *= -1
    A[0::4, 2::4] *= -1
    A[3::4, 1::4] *= -1
    A[3::4, 2::4] *= -1
    A[A < 0] += N * N - 1
    A += 1
    return A
def f2(N):
    A = f(N // 2)
    A = np.repeat(A, 2, axis=0).repeat(2, axis=1)
    A = (A - 1) * 4
    n = N // 4
    # L-type
    A[:2 * n + 2:2, ::2] += 4
    A[:2 * n + 2:2, 1::2] += 1
    A[1:2 * n + 2:2, ::2] += 2
    A[1:2 * n + 2:2, 1::2] += 3
    # U-type
    A[2 * n + 2, ::2] += 1
    A[2 * n + 2, 1::2] += 4
    A[2 * n + 3, ::2] += 2
    A[2 * n + 3, 1::2] += 3
    # X-type
    A[2 * n + 4::2, ::2] += 1
    A[2 * n + 4::2, 1::2] += 4
    A[2 * n + 5::2, ::2] += 3
    A[2 * n + 5::2, 1::2] += 2
    # modify center
    A[2 * n, 2 * n] -= 3
    A[2 * n, 2 * n + 1] += 3
    A[2 * n + 2, 2 * n] += 3
    A[2 * n + 2, 2 * n + 1] -= 3
    return A
N = int(readline())
A = np.array(read().split()).reshape(N, N).astype(np.int8)
def check(A, B):
    N = A.shape[0]
    A = A.ravel()
    B = B.ravel()
    Ax, Ay = np.divmod(np.argmax(A), N)
    Bx, By = np.divmod(np.argmax(B), N)
    pos_A = np.empty_like(A)
    pos_A[A] = np.arange(N * N)
    B = pos_A[B]
    inv = 0
    for i, x in enumerate(B):
        inv += np.sum(B[:i] > x)
    dist = abs(Ax-Bx) + abs(Ay-By)
    return (inv - dist) % 2 == 0
def solve(A):
    N = A.shape[0]
    if N == 1:
        return A
    if N == 2:
        return None
    if N == 3:
        B = f(N) - 1
        if check(A, B):
            return B
        else:
            return None
    if N % 2 == 0:
        B = f(N) - 1
        if check(A, B):
            return B
        else:
            return B[::-1]
    if N % 3 != 0:
        # 完全方陣
        x = np.arange(N)
        B0 = np.add.outer(x, 2 * x) % N
        B1 = B0.T
        B = N * B0 + B1
        if check(A, B):
            return B
        return np.roll(B, axis=0)
    # N は 3 の倍数
    M = N // 3
    C = (f(M) - 1) * 9
    D = f(3) - 1
    B = np.empty_like(A)
    for i in range(3):
        for j in range(3):
            B[i::3, j::3] = C + D[i, j]
    if check(A, B):
        return B
    x, y = divmod(np.argmax(C), M)
    temp = B[3 * x, 3 * y:3 * y + 3].copy()
    B[3 * x, 3 * y:3 * y + 3] = B[3 * x + 2, 3 * y:3 * y + 3]
    B[3 * x + 2, 3 * y:3 * y + 3] = temp
    return B
A[A == 0] = N * N
A -= 1
B = solve(A)
if B is None:
    print('impossible')
else:
    print('possible')
    B += 1
    print('\n'.join(' '.join(row) for row in B.astype(str)))
            
            
            
        
            
maspy