結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | south37 |
提出日時 | 2020-05-03 17:35:41 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,048 bytes |
コンパイル時間 | 1,200 ms |
コンパイル使用メモリ | 107,448 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-13 00:57:10 |
合計ジャッジ時間 | 1,999 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
ソースコード
// ref. http://www.math.sci.hokudai.ac.jp/~ishikawa/yasashii/yahosoku.pdf #include <algorithm> #include <bitset> #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <iostream> #include <map> #include <queue> #include <unordered_map> #include <vector> #include <string.h> #include <set> using namespace std; #define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl template<class T> void printvec(const vector<T>& v) { for (auto x : v) { cout << x << " "; } cout << endl; } template<class T> void printtree(const vector< vector<T> >& tree) { for (long long i = 0; i < tree.size(); ++i) { cout << i + 1 << ": "; printvec(tree[i]); } } template<class T, class U> void printmap(const map<T, U>& mp) { for (auto x : mp) { cout << x.first << "=>" << x.second << endl; } } template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false; } #define rep(i, n) for(ll i = 0; i < n; ++i) #define all(s) s.begin(), s.end() #define sz(x) (ll)(x).size() #define fr first #define sc second #define mp make_pair #define pb push_back #define eb emplace_back typedef long long ll; typedef unsigned long long ull; typedef pair<ll, ll> P; typedef tuple<ll, ll, ll> triple; typedef double D; typedef vector<ll> vl; typedef vector<P> vp; const ll INF = 1e9; ll MOD; // Mod int // cf. https://www.youtube.com/watch?v=1Z6ofKN03_Y struct mint { ll x; mint(ll x = 0) : x((x + MOD) % MOD) {} mint& operator+= (const mint a) { if ((x += a.x) >= MOD) x %= MOD; return *this; } mint operator+ (const mint a) const { mint res(*this); return res += a; } mint& operator-= (const mint a) { if ((x += MOD - a.x) >= MOD) x %= MOD; return *this; } mint operator- (const mint a) const { mint res(*this); return res -= a; } mint& operator*= (const mint a) { (x *= a.x) %= MOD; return *this; } mint operator* (const mint a) const { mint res(*this); return res *= a; } mint pow(ll t) const { if (!t) { return 1; } mint a = pow(t >> 1); a *= a; if (t & 1) a *= *this; return a; } // for prime mod mint inv() const { return pow(MOD-2); } mint& operator/= (const mint a) { return (*this) *= a.inv(); } mint operator/ (const mint a) const { mint res(*this); return res /= a; } }; istream& operator>>(istream& is, const mint& a) { return is >> a.x;} ostream& operator<<(ostream& os, const mint& a) { return os << a.x;} // Matrix<T>. // Support pow(Matrix<t> a, ll n). template<class T> struct Matrix { public: Matrix(int n, int m, T x = 0) : val(n, vector<T>(m, x)) {} void init(int n, int m, T x = 0) { val.assign(n, vector<T>(m, x)); } size_t size() const { return val.size(); } inline vector<T>& operator [] (int i) { return val[i]; } private: vector< vector<T> > val; }; template<class T> ostream& operator << (ostream& s, Matrix<T> A) { s << endl; rep(i, A.size()) { rep(j, A[i].size()) { s << A[i][j] << ", "; } s << endl; } return s; } template<class T> Matrix<T> operator * (Matrix<T> A, Matrix<T> B) { Matrix<T> R(A.size(), B[0].size()); rep(i, A.size()) { rep(j, B[0].size()) { rep(k, B.size()) { R[i][j] += A[i][k] * B[k][j]; } } } return R; } template<class T> Matrix<T> pow(Matrix<T> A, long long n) { Matrix<T> R(A.size(), A.size()); rep(i, A.size()) { R[i][i] = 1; } while (n > 0) { if (n & 1) { R = R * A; } A = A * A; n >>= 1; } return R; } int main(int argc, char** argv) { cin.tie(NULL); cout.tie(NULL); ios_base::sync_with_stdio(false); //cout << setprecision(10) << fixed; ll n; cin >> n >> MOD; Matrix<mint> a(2, 2, 0); a[0][0] = 1; a[0][1] = 1; a[1][0] = 1; a[1][1] = 0; Matrix<mint> b = pow(a, n-1); mint ans = b[1][0]; // sum of b[1][0]*1 + b[1][1]*0. cout << ans << endl; }