結果
問題 | No.1045 直方体大学 |
ユーザー | wk |
提出日時 | 2020-05-03 17:38:48 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,267 bytes |
コンパイル時間 | 1,913 ms |
コンパイル使用メモリ | 170,840 KB |
実行使用メモリ | 18,928 KB |
最終ジャッジ日時 | 2024-06-13 01:04:42 |
合計ジャッジ時間 | 3,015 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 299 ms
18,784 KB |
ソースコード
#include <bits/stdc++.h> #define REP(i, n) for(int i = 0; (i) < (n); (i)++) using namespace std; struct Edge{ int to; long weight; Edge(int t, long w) : to(t), weight(w) {} }; long modpow(long a, long n, long mod) { long res = 1; while (n > 0) { if (n & 1) res = res * a % mod; a = a * a % mod; n >>= 1; } return res; } // a^{-1} mod を計算する long modinv(long a, long mod) { return modpow(a, mod - 2, mod); } struct compare1 { bool operator()(const pair<long, long>& value, const long& key) { return (value.first < key); } bool operator()(const long& key, const pair<long, long>& value) { return (key < value.first); } }; struct RMQ { vector<int> a; int inf = 2000000000; // 2*10^9 int n = 1; RMQ(int n_ = 1){ init(n_); } void init(int n_ = 1){ while(n < n_) n *= 2; a.resize(2*n-1); REP(i, 2*n-1) a[i] = inf; } //k番目の値(0-indexed)をbに変更 void update(int k, int b){ k += n-1; a[k] = b; while(k > 0){ k = (k-1)/2; a[k] = min(a[2*k+1], a[2*k+2]); } } //[c,b)の最小値を返す際に呼ぶ関数 int query_first(int c, int b){ return query(c, b, 0, 0, n); } //k : 節点番号, l, rはその接点が[l, r)に対応することを示す int query(int c, int b, int k, int l, int r){ if(r <= c || b <= l) return inf; if(c <= l && r <= b) return a[k]; else{ int vl = query(c, b, k*2+1, l, (l+r)/2); int vr = query(c, b, k*2+2, (l+r)/2, r); return min(vl, vr); } } }; struct UnionFind { vector<int> par; vector<int> rank; UnionFind(int n = 1){ init(n); } void init(int n = 1){ par.resize(n); rank.resize(n); REP(i, n) par[i] = i, rank[i] = 0; } int root(int x){ if(par[x] == x) return x; else return par[x] = root(par[x]); } bool issame(int x, int y){ return root(x) == root(y); } bool merge(int x, int y){ x = root(x); y = root(y); if(x == y) return false; if(rank[x] < rank[y]) swap(x, y); if(rank[x] == rank[y]) rank[x]++; par[y] = x; return true; } }; template<class Abel> struct weightedUnionFind{ vector<int> par; vector<int> rank; vector<Abel> diff_weight; weightedUnionFind(int n = 1, Abel SUM_UNITY = 0){ init(n, SUM_UNITY); } void init(int n = 1, Abel SUM_UNITY = 0){ par.resize(n); rank.resize(n); diff_weight.resize(n); REP(i, n) par[i] = i, rank[i] = 0, diff_weight[i] = SUM_UNITY; } int root(int x){ if(par[x] == x) return x; else{ int r = root(par[x]); diff_weight[x] += diff_weight[par[x]]; return par[x] = r; } } Abel weight(int x){ root(x); return diff_weight[x]; } bool issame(int x, int y){ return root(x) == root(y); } bool merge(int x, int y, Abel w){ w += weight(x); w -= weight(y); x = root(x); y = root(y); if(x == y) return false; if(rank[x] < rank[y]) swap(x, y), w = -w; if(rank[x] == rank[y]) rank[x]++; par[y] = x; diff_weight[y] = w; return true; } Abel diff(int x, int y){ return weight(y) - weight(x); } }; using Graph = vector<vector<int>>; using P = pair<long, long>; /* void dijkstra(int s, int V, Graph &G, long* d){ priority_queue<P, vector<P>, greater<P>> pque; fill(d, d + V, INF); d[s] = 0; pque.push(P(0, s)); while(!pque.empty()){ P p = pque.top(); pque.pop(); int now = p.second; if(d[now] < p.first) continue; REP(i, G[now].size()){ Edge e = G[now][i]; if(d[e.to] > d[now] + e.weight){ d[e.to] = d[now] + e.weight; pque.push(P(d[e.to], e.to)); } } } } */ int GCD(int a, int b){ if(b == 0) return a; if(a < b) return GCD(b, a); else return GCD(b, a%b); } struct BIT{ vector<long> dat; int n = 1; BIT(int nn = 1){ init(nn); } void init(int nn = 1){ while(n < nn) n *= 2; dat.resize(n+1); REP(i, n+1) dat[i] = 0l; } //1-indexed!!!! //index iにx加える void add(int i, long x){ while(i <= n){ dat[i] += x; i += (i&(-i)); } } //1-indexed!!!!! //index 1-iまでの和を求める long get_sum(int i){ long ans = 0l; while(i > 0){ ans += dat[i]; i -= (i & (-i)); } return ans; } }; //{0, 1, 2, ..., n-1}までの中からk個の要素を持つ部分集合についての処理を行う int next_combination(int sub){ int x = sub & -sub, y = sub + x; return (((sub & ~y) / x) >> 1) | y; } //main関数内で //bit = (1<<k)-1; //for(; bit < (1<<n); bit = next_combination(bit)) // REP(i, n) if(bit & (1<<i)) でbitの中で選ばれている要素iを全部取得できる //bitset<8>(bit)でbitを8桁の2進数で表示できる int N; int A[20], B[20], C[20]; int dp[(1<<16)+1][20][3]; int rec(int bit, int last, int men){ //cout << "rec " << bit << " " << last << " " << men << endl; if(dp[bit][last][men] != -1) return dp[bit][last][men]; if(bit == 0) return dp[bit][last][men] = 0; if(__builtin_popcount(bit) == 1 && bit != (1<<last)) return dp[bit][last][men] = 0; if(bit == (1<<last)){ //cout << "equal " << bit << " " << last << " " << men << endl; if(men == 0) return dp[bit][last][men] = A[last]; else if(men == 1) return dp[bit][last][men] = B[last]; else return dp[bit][last][men] = C[last]; } int ans = 0; int prev_bit = bit & ~(1<<last); int t, y, ta; if(men==0) ta = A[last], t = B[last], y = C[last]; else if(men==1) t = A[last], ta = B[last], y = C[last]; else t = A[last], y = B[last], ta = C[last]; for(int u=0;u<N;u++){ if(prev_bit & (1<<u)){ for(int i=0;i<3;i++){ int tate, yoko; if(i==0) tate = B[u], yoko = C[u]; else if(i==1) tate = A[u], yoko = C[u]; else tate = A[u], yoko = B[u]; if((t>=tate && y>=yoko) || (t>=yoko && y>=tate)){ //cout << "tumu " << bit << " " << last << " " << men << " " << prev_bit << " " << u << " " << i << endl; ans = max(ans, rec(prev_bit, u, i) + ta); } } } } return dp[bit][last][men] = ans; } int main() { cin >> N; REP(i, N) cin >> A[i] >> B[i] >> C[i]; REP(i, (1<<N)) REP(j, N) REP(k, 3) dp[i][j][k] = -1; int ans = 0; REP(i, N) REP(j, 3){ //cout << rec((1<<N)-1, i, j) << endl; ans = max(ans, rec((1<<N)-1, i, j)); } //REP(i, (1<<N)) REP(j, N) REP(k, 3) cout << i << " " << j << " " << k << " " << dp[i][j][k] << endl; cout << ans << endl; return 0; }