結果
問題 |
No.890 移調の限られた旋法
|
ユーザー |
![]() |
提出日時 | 2020-05-04 16:01:23 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
WA
|
実行時間 | - |
コード長 | 1,141 bytes |
コンパイル時間 | 94 ms |
コンパイル使用メモリ | 12,672 KB |
実行使用メモリ | 108,116 KB |
最終ジャッジ日時 | 2024-06-24 12:09:16 |
合計ジャッジ時間 | 35,590 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 21 WA * 11 |
ソースコード
def divisor(n): ass = [] for i in range(1, int((n+1)**0.5)+1): if n%i == 0: ass.append(i) if i*i < n: ass.append(n//i) return ass #sortされていない def primes(n): is_prime = [True] * (n + 1) is_prime[0] = is_prime[1] = False for i in range(2, int((n+1)**0.5)+1): if is_prime[i]: for j in range(i *2, n + 1, i): is_prime[j] = False res = [i for i in range(n+1) if is_prime[i]] return res n_ = 10**6 mod = 10**9 + 7 fun = [1] * (n_ + 1) for i in range(1, n_ + 1): fun[i] = fun[i - 1] * i % mod rev = [1] * (n_ + 1) rev[n_] = pow(fun[n_], mod - 2, mod) for i in range(n_ - 1, 0, -1): rev[i] = rev[i + 1] * (i + 1) % mod def nCr(n, r): if r > n: return 0 return fun[n] * rev[r] % mod * rev[n - r] % mod n, k = map(int, input().split()) res = [0]*(n+1) for x in set(divisor(n)) & set(divisor(k)): res[x] = nCr(n//x, k//x) res[1] = 0 prl = primes(n) for i in range(n+1): if res[i]: for p in prl: if i*p > n: break res[i] -= res[i*p] print(sum(res))