結果
問題 | No.789 範囲の合計 |
ユーザー | yupiteru_kun |
提出日時 | 2020-05-04 20:36:10 |
言語 | C#(csc) (csc 3.9.0) |
結果 |
AC
|
実行時間 | 160 ms / 1,000 ms |
コード長 | 25,442 bytes |
コンパイル時間 | 1,535 ms |
コンパイル使用メモリ | 117,760 KB |
実行使用メモリ | 26,624 KB |
最終ジャッジ日時 | 2024-06-24 22:42:15 |
合計ジャッジ時間 | 4,821 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 28 ms
18,816 KB |
testcase_01 | AC | 28 ms
18,560 KB |
testcase_02 | AC | 159 ms
26,496 KB |
testcase_03 | AC | 160 ms
26,624 KB |
testcase_04 | AC | 144 ms
26,240 KB |
testcase_05 | AC | 119 ms
22,784 KB |
testcase_06 | AC | 134 ms
26,496 KB |
testcase_07 | AC | 144 ms
26,240 KB |
testcase_08 | AC | 113 ms
26,496 KB |
testcase_09 | AC | 93 ms
26,496 KB |
testcase_10 | AC | 158 ms
21,248 KB |
testcase_11 | AC | 133 ms
26,624 KB |
testcase_12 | AC | 109 ms
26,368 KB |
testcase_13 | AC | 29 ms
18,816 KB |
testcase_14 | AC | 26 ms
18,816 KB |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System; using System.Collections.Generic; using System.IO; using System.Linq; using static System.Math; using System.Text; using System.Threading; using System.Globalization; using System.Runtime.CompilerServices; using Library; namespace Program { public static class YUKICODER1 { static bool SAIKI = true; static public int numberOfRandomCases = 0; static public void MakeTestCase(List<string> _input, List<string> _output, ref Func<string[], bool> _outputChecker) { } static public void Solve() { var N = NN; var tree = new LIB_RedBlackTree<long, long, long>(0, 0, (x, y) => x + y, (x, y) => x + y, (x, y) => x + y); var ans = 0L; for (var i = 0; i < N; i++) { if (NN == 0) { var x = NN; var y = NN; tree.Add(x, y); } else { var l = NN; var r = NN; ans += tree.Query(tree.LowerBound(l), tree.UpperBound(r)); } } Console.WriteLine(ans); } class Printer : StreamWriter { public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } } public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; } public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; } } static LIB_FastIO fastio = new LIB_FastIODebug(); static public void Main(string[] args) { if (args.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); } static long NN => fastio.Long(); static double ND => fastio.Double(); static string NS => fastio.Scan(); static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray(); static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray(); static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray(); static long Count<T>(this IEnumerable<T> x, Func<T, bool> pred) => Enumerable.Count(x, pred); static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n); static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c); static IOrderedEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x, _ => xorshift); static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x.OrderByRand(), e => e); static IOrderedEnumerable<T1> OrderBy<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderBy(x.OrderByRand(), selector); static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e); static IOrderedEnumerable<T1> OrderByDescending<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector); static IOrderedEnumerable<string> OrderBy(this IEnumerable<string> x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable<string> OrderByDescending(this IEnumerable<string> x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase); static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase); static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } } static IEnumerator<uint> _xsi = _xsc(); static IEnumerator<uint> _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = (uint)(DateTime.Now.Ticks & 0xffffffff); while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } } } } namespace Library { class LIB_RedBlackTree { public struct SumEntity { public long s; public long c; } static public LIB_RedBlackTree<long, long, long> CreateRUQRmQ() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, long.MaxValue, Math.Min, (x, y) => y, (x, y) => y); static public LIB_RedBlackTree<long, long, long> CreateRAQRmQ() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, 0, Math.Min, (x, y) => x + y, (x, y) => x + y); static public LIB_RedBlackTree<long, long, long> CreateRUQRMQ() => new LIB_RedBlackTree<long, long, long>(long.MinValue, long.MinValue, Math.Max, (x, y) => y, (x, y) => y); static public LIB_RedBlackTree<long, long, long> CreateRAQRMQ() => new LIB_RedBlackTree<long, long, long>(long.MinValue, 0, Math.Max, (x, y) => x + y, (x, y) => x + y); static public LIB_RedBlackTree<long, SumEntity, long> CreateRUQRSQ() => new LIB_RedBlackTree<long, SumEntity, long>(new SumEntity { c = 0, s = 0 }, long.MaxValue, (x, y) => new SumEntity { c = x.c + y.c, s = x.s + y.s }, (x, y) => new SumEntity { c = x.c, s = x.c * y }, (x, y) => y); static public LIB_RedBlackTree<long, SumEntity, long> CreateRAQRSQ() => new LIB_RedBlackTree<long, SumEntity, long>(new SumEntity { c = 0, s = 0 }, 0, (x, y) => new SumEntity { c = x.c + y.c, s = x.s + y.s }, (x, y) => new SumEntity { c = x.c, s = x.s + x.c * y }, (x, y) => x + y); } class LIB_RedBlackTree<Key, ValueT, ValueE> where ValueE : IEquatable<ValueE> { bool ope; class Node { public Node left; public Node right; public Key key; public ValueT val; public ValueT dat; public ValueE lazy; public bool isBlack; public int cnt; public bool needRecalc; } Func<ValueT, ValueT, ValueT> f; Func<ValueT, ValueE, ValueT> g; Func<ValueE, ValueE, ValueE> h; ValueT ti; ValueE ei; Comparison<Key> c; Node root; bool isNeedFix; Node lmax; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, ValueT> g, Func<ValueE, ValueE, ValueE> h, Comparison<Key> c, bool ope = true) { this.ti = ti; this.ei = ei; this.f = f; this.g = g; this.h = h; this.c = c; this.ope = ope; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, ValueT> g, Func<ValueE, ValueE, ValueE> h) : this(ti, ei, f, g, h, Comparer<Key>.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] bool IsRed(Node n) => n != null && !n.isBlack; [MethodImpl(MethodImplOptions.AggressiveInlining)] bool IsBlack(Node n) => n != null && n.isBlack; [MethodImpl(MethodImplOptions.AggressiveInlining)] int Cnt(Node n) => n?.cnt ?? 0; [MethodImpl(MethodImplOptions.AggressiveInlining)] void Eval(Node n) { if (n == null || ei.Equals(n.lazy)) return; n.val = g(n.val, n.lazy); if (!n.needRecalc) n.dat = g(n.dat, n.lazy); if (n.left != null) n.left.lazy = h(n.left.lazy, n.lazy); if (n.right != null) n.right.lazy = h(n.right.lazy, n.lazy); n.lazy = ei; } [MethodImpl(MethodImplOptions.AggressiveInlining)] void Recalc(Node n) { if (n == null) return; Eval(n); if (!n.needRecalc) return; n.needRecalc = false; n.dat = n.val; if (n.left != null) { Recalc(n.left); n.dat = f(n.left.dat, n.dat); } if (n.right != null) { Recalc(n.right); n.dat = f(n.dat, n.right.dat); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node RotateL(Node n) { if (ope) { Eval(n); Eval(n.right); } Node m = n.right, t = m.left; m.left = n; n.right = t; n.cnt -= m.cnt - Cnt(t); m.cnt += n.cnt - Cnt(t); if (ope) { n.needRecalc = true; m.needRecalc = true; } return m; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node RotateR(Node n) { if (ope) { Eval(n); Eval(n.left); } Node m = n.left, t = m.right; m.right = n; n.left = t; n.cnt -= m.cnt - Cnt(t); m.cnt += n.cnt - Cnt(t); if (ope) { n.needRecalc = true; m.needRecalc = true; } return m; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node RotateLR(Node n) { n.left = RotateL(n.left); return RotateR(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node RotateRL(Node n) { n.right = RotateR(n.right); return RotateL(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(Key key, ValueT val) { root = Add(root, key, val); root.isBlack = true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node Add(Node n, Key key, ValueT val) { if (n == null) { isNeedFix = true; return new Node() { key = key, val = val, dat = val, lazy = ei, cnt = 1 }; } if (ope) Eval(n); if (c(key, n.key) < 0) n.left = Add(n.left, key, val); else n.right = Add(n.right, key, val); if (ope) n.needRecalc = true; n.cnt++; return Balance(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node Balance(Node n) { if (!isNeedFix) return n; if (!IsBlack(n)) return n; if (IsRed(n.left) && IsRed(n.left.left)) { n = RotateR(n); n.left.isBlack = true; } else if (IsRed(n.left) && IsRed(n.left.right)) { n = RotateLR(n); n.left.isBlack = true; } else if (IsRed(n.right) && IsRed(n.right.left)) { n = RotateRL(n); n.right.isBlack = true; } else if (IsRed(n.right) && IsRed(n.right.right)) { n = RotateL(n); n.right.isBlack = true; } else isNeedFix = false; return n; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(Key key) { root = Remove(root, key); if (root != null) root.isBlack = true; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node Remove(Node n, Key key) { if (n == null) throw new Exception(); if (ope) Eval(n); n.cnt--; var r = c(key, n.key); if (r < 0) { n.left = Remove(n.left, key); if (ope) n.needRecalc = true; return BalanceL(n); } if (r > 0) { n.right = Remove(n.right, key); if (ope) n.needRecalc = true; return BalanceR(n); } if (n.left == null) { isNeedFix = n.isBlack; return n.right; } n.left = RemoveMax(n.left); n.key = lmax.key; n.val = lmax.val; if (ope) n.needRecalc = true; return BalanceL(n); } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node RemoveMax(Node n) { if (ope) Eval(n); n.cnt--; if (n.right != null) { n.right = RemoveMax(n.right); if (ope) n.needRecalc = true; return BalanceR(n); } lmax = n; isNeedFix = n.isBlack; return n.left; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node BalanceL(Node n) { if (!isNeedFix) return n; if (IsBlack(n.right) && IsRed(n.right.left)) { var b = n.isBlack; n = RotateRL(n); n.isBlack = b; n.left.isBlack = true; isNeedFix = false; } else if (IsBlack(n.right) && IsRed(n.right.right)) { var b = n.isBlack; n = RotateL(n); n.isBlack = b; n.right.isBlack = true; n.left.isBlack = true; isNeedFix = false; } else if (IsBlack(n.right)) { isNeedFix = n.isBlack; n.isBlack = true; n.right.isBlack = false; } else { n = RotateL(n); n.isBlack = true; n.left.isBlack = false; n.left = BalanceL(n.left); isNeedFix = false; } return n; } [MethodImpl(MethodImplOptions.AggressiveInlining)] Node BalanceR(Node n) { if (!isNeedFix) return n; if (IsBlack(n.left) && IsRed(n.left.right)) { var b = n.isBlack; n = RotateLR(n); n.isBlack = b; n.right.isBlack = true; isNeedFix = false; } else if (IsBlack(n.left) && IsRed(n.left.left)) { var b = n.isBlack; n = RotateR(n); n.isBlack = b; n.left.isBlack = true; n.right.isBlack = true; isNeedFix = false; } else if (IsBlack(n.left)) { isNeedFix = n.isBlack; n.isBlack = true; n.left.isBlack = false; } else { n = RotateR(n); n.isBlack = true; n.right.isBlack = false; n.right = BalanceR(n.right); isNeedFix = false; } return n; } public KeyValuePair<Key, ValueT> this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return At(root, i); } } [MethodImpl(MethodImplOptions.AggressiveInlining)] KeyValuePair<Key, ValueT> At(Node n, long i) { if (ope) Eval(n); if (n.left == null) { if (i == 0) return new KeyValuePair<Key, ValueT>(n.key, n.val); else return At(n.right, i - 1); } if (n.left.cnt == i) return new KeyValuePair<Key, ValueT>(n.key, n.val); if (n.left.cnt > i) return At(n.left, i); return At(n.right, i - n.left.cnt - 1); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Have(Key key) { var t = LowerBound(key); return t < Cnt(root) && c(At(root, t).Key, key) == 0; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(Key key) => UpperBound(root, key); [MethodImpl(MethodImplOptions.AggressiveInlining)] long UpperBound(Node n, Key key) { if (n == null) return 0; var r = c(key, n.key); if (r < 0) return UpperBound(n.left, key); return Cnt(n.left) + 1 + UpperBound(n.right, key); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(Key key) => LowerBound(root, key); [MethodImpl(MethodImplOptions.AggressiveInlining)] long LowerBound(Node n, Key key) { if (n == null) return 0; var r = c(key, n.key); if (r <= 0) return LowerBound(n.left, key); return Cnt(n.left) + 1 + LowerBound(n.right, key); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair<Key, ValueT> Min() { Node n = root.left, p = root; while (n != null) { p = n; if (ope) Eval(p); n = n.left; } return new KeyValuePair<Key, ValueT>(p.key, p.val); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair<Key, ValueT> Max() { Node n = root.right, p = root; while (n != null) { p = n; if (ope) Eval(p); n = n.right; } return new KeyValuePair<Key, ValueT>(p.key, p.val); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Update(long l, long r, ValueE val) => Update(root, l, r, val); [MethodImpl(MethodImplOptions.AggressiveInlining)] void Update(Node n, long l, long r, ValueE val) { if (n == null) return; Eval(n); n.needRecalc = true; var lc = Cnt(n.left); if (lc < l) Update(n.right, l - lc - 1, r - lc - 1, val); else if (r <= lc) Update(n.left, l, r, val); else if (l <= 0 && Cnt(n) <= r) n.lazy = val; else { n.val = g(n.val, val); if (l < lc) Update(n.left, l, lc, val); if (lc + 1 < r) Update(n.right, 0, r - lc - 1, val); } return; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public ValueT Query(long l, long r) => Query(root, l, r); [MethodImpl(MethodImplOptions.AggressiveInlining)] ValueT Query(Node n, long l, long r) { var v1 = ti; var v2 = ti; var v3 = ti; if (n == null) return ti; Eval(n); var lc = Cnt(n.left); if (lc < l) v3 = Query(n.right, l - lc - 1, r - lc - 1); else if (r <= lc) v1 = Query(n.left, l, r); else if (l <= 0 && Cnt(n) <= r) { Recalc(n); v2 = n.dat; } else { if (l < lc) v1 = Query(n.left, l, lc); if (lc + 1 < r) v3 = Query(n.right, 0, r - lc - 1); v2 = n.val; } return f(f(v1, v2), v3); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => root != null; public long Count => Cnt(root); [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable<KeyValuePair<Key, ValueT>> List() => L(root); [MethodImpl(MethodImplOptions.AggressiveInlining)] IEnumerable<KeyValuePair<Key, ValueT>> L(Node n) { if (n == null) yield break; foreach (var i in L(n.left)) yield return i; yield return new KeyValuePair<Key, ValueT>(n.key, n.val); foreach (var i in L(n.right)) yield return i; } } class LIB_RedBlackTree<Key, Value> { LIB_RedBlackTree<Key, Value, int> tree; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(Comparison<Key> c) { tree = new LIB_RedBlackTree<Key, Value, int>(default(Value), 0, (x, y) => x, (x, y) => x, (x, y) => x, c, false); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree() : this(Comparer<Key>.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(Key key, Value val) => tree.Add(key, val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(Key key) => tree.Remove(key); public KeyValuePair<Key, Value> this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return tree[i]; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Have(Key key) => tree.Have(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(Key key) => tree.UpperBound(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(Key key) => tree.LowerBound(key); [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair<Key, Value> Min() => tree.Min(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public KeyValuePair<Key, Value> Max() => tree.Max(); [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => tree.Any(); public long Count => tree.Count; [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable<KeyValuePair<Key, Value>> List() => tree.List(); } class LIB_RedBlackTree<T> { LIB_RedBlackTree<T, int, int> tree; [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree(Comparison<T> c) { tree = new LIB_RedBlackTree<T, int, int>(0, 0, (x, y) => x, (x, y) => x, (x, y) => x, c, false); } [MethodImpl(MethodImplOptions.AggressiveInlining)] public LIB_RedBlackTree() : this(Comparer<T>.Default.Compare) { } [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Add(T val) => tree.Add(val, 0); [MethodImpl(MethodImplOptions.AggressiveInlining)] public void Remove(T val) => tree.Remove(val); public T this[long i] { [MethodImpl(MethodImplOptions.AggressiveInlining)] get { return tree[i].Key; } } [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Have(T val) => tree.Have(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long UpperBound(T val) => tree.UpperBound(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public long LowerBound(T val) => tree.LowerBound(val); [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Min() => tree.Min().Key; [MethodImpl(MethodImplOptions.AggressiveInlining)] public T Max() => tree.Max().Key; [MethodImpl(MethodImplOptions.AggressiveInlining)] public bool Any() => tree.Any(); public long Count => tree.Count; [MethodImpl(MethodImplOptions.AggressiveInlining)] public IEnumerable<T> List() => tree.List().Select(e => e.Key); } class LIB_FastIO { public LIB_FastIO() { str = Console.OpenStandardInput(); } readonly Stream str; readonly byte[] buf = new byte[1024]; int len, ptr; public bool isEof = false; public bool IsEndOfStream { get { return isEof; } } byte read() { if (isEof) throw new EndOfStreamException(); if (ptr >= len) { ptr = 0; if ((len = str.Read(buf, 0, 1024)) <= 0) { isEof = true; return 0; } } return buf[ptr++]; } char Char() { byte b = 0; do b = read(); while (b < 33 || 126 < b); return (char)b; } virtual public string Scan() { var sb = new StringBuilder(); for (var b = Char(); b >= 33 && b <= 126; b = (char)read()) sb.Append(b); return sb.ToString(); } virtual public long Long() { long ret = 0; byte b = 0; var ng = false; do b = read(); while (b != '-' && (b < '0' || '9' < b)); if (b == '-') { ng = true; b = read(); } for (; true; b = read()) { if (b < '0' || '9' < b) return ng ? -ret : ret; else ret = ret * 10 + b - '0'; } } virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); } } class LIB_FastIODebug : LIB_FastIO { Queue<string> param = new Queue<string>(); string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); } public LIB_FastIODebug() { } public override string Scan() => NextString(); public override long Long() => long.Parse(NextString()); public override double Double() => double.Parse(NextString()); } }