結果
| 問題 |
No.789 範囲の合計
|
| コンテスト | |
| ユーザー |
yupiteru_kun
|
| 提出日時 | 2020-05-04 20:36:10 |
| 言語 | C#(csc) (csc 3.9.0) |
| 結果 |
AC
|
| 実行時間 | 160 ms / 1,000 ms |
| コード長 | 25,442 bytes |
| コンパイル時間 | 1,535 ms |
| コンパイル使用メモリ | 117,760 KB |
| 実行使用メモリ | 26,624 KB |
| 最終ジャッジ日時 | 2024-06-24 22:42:15 |
| 合計ジャッジ時間 | 4,821 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 15 |
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc) Copyright (C) Microsoft Corporation. All rights reserved.
ソースコード
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using static System.Math;
using System.Text;
using System.Threading;
using System.Globalization;
using System.Runtime.CompilerServices;
using Library;
namespace Program
{
public static class YUKICODER1
{
static bool SAIKI = true;
static public int numberOfRandomCases = 0;
static public void MakeTestCase(List<string> _input, List<string> _output, ref Func<string[], bool> _outputChecker)
{
}
static public void Solve()
{
var N = NN;
var tree = new LIB_RedBlackTree<long, long, long>(0, 0, (x, y) => x + y, (x, y) => x + y, (x, y) => x + y);
var ans = 0L;
for (var i = 0; i < N; i++)
{
if (NN == 0)
{
var x = NN;
var y = NN;
tree.Add(x, y);
}
else
{
var l = NN;
var r = NN;
ans += tree.Query(tree.LowerBound(l), tree.UpperBound(r));
}
}
Console.WriteLine(ans);
}
class Printer : StreamWriter
{
public override IFormatProvider FormatProvider { get { return CultureInfo.InvariantCulture; } }
public Printer(Stream stream) : base(stream, new UTF8Encoding(false, true)) { base.AutoFlush = false; }
public Printer(Stream stream, Encoding encoding) : base(stream, encoding) { base.AutoFlush = false; }
}
static LIB_FastIO fastio = new LIB_FastIODebug();
static public void Main(string[] args) { if (args.Length == 0) { fastio = new LIB_FastIO(); Console.SetOut(new Printer(Console.OpenStandardOutput())); } if (SAIKI) { var t = new Thread(Solve, 134217728); t.Start(); t.Join(); } else Solve(); Console.Out.Flush(); }
static long NN => fastio.Long();
static double ND => fastio.Double();
static string NS => fastio.Scan();
static long[] NNList(long N) => Repeat(0, N).Select(_ => NN).ToArray();
static double[] NDList(long N) => Repeat(0, N).Select(_ => ND).ToArray();
static string[] NSList(long N) => Repeat(0, N).Select(_ => NS).ToArray();
static long Count<T>(this IEnumerable<T> x, Func<T, bool> pred) => Enumerable.Count(x, pred);
static IEnumerable<T> Repeat<T>(T v, long n) => Enumerable.Repeat<T>(v, (int)n);
static IEnumerable<int> Range(long s, long c) => Enumerable.Range((int)s, (int)c);
static IOrderedEnumerable<T> OrderByRand<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x, _ => xorshift);
static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x) => Enumerable.OrderBy(x.OrderByRand(), e => e);
static IOrderedEnumerable<T1> OrderBy<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderBy(x.OrderByRand(), selector);
static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x) => Enumerable.OrderByDescending(x.OrderByRand(), e => e);
static IOrderedEnumerable<T1> OrderByDescending<T1, T2>(this IEnumerable<T1> x, Func<T1, T2> selector) => Enumerable.OrderByDescending(x.OrderByRand(), selector);
static IOrderedEnumerable<string> OrderBy(this IEnumerable<string> x) => x.OrderByRand().OrderBy(e => e, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<T> OrderBy<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderBy(selector, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<string> OrderByDescending(this IEnumerable<string> x) => x.OrderByRand().OrderByDescending(e => e, StringComparer.OrdinalIgnoreCase);
static IOrderedEnumerable<T> OrderByDescending<T>(this IEnumerable<T> x, Func<T, string> selector) => x.OrderByRand().OrderByDescending(selector, StringComparer.OrdinalIgnoreCase);
static uint xorshift { get { _xsi.MoveNext(); return _xsi.Current; } }
static IEnumerator<uint> _xsi = _xsc();
static IEnumerator<uint> _xsc() { uint x = 123456789, y = 362436069, z = 521288629, w = (uint)(DateTime.Now.Ticks & 0xffffffff); while (true) { var t = x ^ (x << 11); x = y; y = z; z = w; w = (w ^ (w >> 19)) ^ (t ^ (t >> 8)); yield return w; } }
}
}
namespace Library {
class LIB_RedBlackTree
{
public struct SumEntity
{
public long s;
public long c;
}
static public LIB_RedBlackTree<long, long, long> CreateRUQRmQ() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, long.MaxValue, Math.Min, (x, y) => y, (x, y) => y);
static public LIB_RedBlackTree<long, long, long> CreateRAQRmQ() => new LIB_RedBlackTree<long, long, long>(long.MaxValue, 0, Math.Min, (x, y) => x + y, (x, y) => x + y);
static public LIB_RedBlackTree<long, long, long> CreateRUQRMQ() => new LIB_RedBlackTree<long, long, long>(long.MinValue, long.MinValue, Math.Max, (x, y) => y, (x, y) => y);
static public LIB_RedBlackTree<long, long, long> CreateRAQRMQ() => new LIB_RedBlackTree<long, long, long>(long.MinValue, 0, Math.Max, (x, y) => x + y, (x, y) => x + y);
static public LIB_RedBlackTree<long, SumEntity, long> CreateRUQRSQ() => new LIB_RedBlackTree<long, SumEntity, long>(new SumEntity { c = 0, s = 0 }, long.MaxValue, (x, y) => new SumEntity { c = x.c + y.c, s = x.s + y.s }, (x, y) => new SumEntity { c = x.c, s = x.c * y }, (x, y) => y);
static public LIB_RedBlackTree<long, SumEntity, long> CreateRAQRSQ() => new LIB_RedBlackTree<long, SumEntity, long>(new SumEntity { c = 0, s = 0 }, 0, (x, y) => new SumEntity { c = x.c + y.c, s = x.s + y.s }, (x, y) => new SumEntity { c = x.c, s = x.s + x.c * y }, (x, y) => x + y);
}
class LIB_RedBlackTree<Key, ValueT, ValueE> where ValueE : IEquatable<ValueE>
{
bool ope;
class Node
{
public Node left;
public Node right;
public Key key;
public ValueT val;
public ValueT dat;
public ValueE lazy;
public bool isBlack;
public int cnt;
public bool needRecalc;
}
Func<ValueT, ValueT, ValueT> f;
Func<ValueT, ValueE, ValueT> g;
Func<ValueE, ValueE, ValueE> h;
ValueT ti;
ValueE ei;
Comparison<Key> c;
Node root;
bool isNeedFix;
Node lmax;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, ValueT> g, Func<ValueE, ValueE, ValueE> h, Comparison<Key> c, bool ope = true)
{
this.ti = ti;
this.ei = ei;
this.f = f;
this.g = g;
this.h = h;
this.c = c;
this.ope = ope;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(ValueT ti, ValueE ei, Func<ValueT, ValueT, ValueT> f, Func<ValueT, ValueE, ValueT> g, Func<ValueE, ValueE, ValueE> h) : this(ti, ei, f, g, h, Comparer<Key>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
bool IsRed(Node n) => n != null && !n.isBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
bool IsBlack(Node n) => n != null && n.isBlack;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
int Cnt(Node n) => n?.cnt ?? 0;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void Eval(Node n)
{
if (n == null || ei.Equals(n.lazy)) return;
n.val = g(n.val, n.lazy);
if (!n.needRecalc) n.dat = g(n.dat, n.lazy);
if (n.left != null) n.left.lazy = h(n.left.lazy, n.lazy);
if (n.right != null) n.right.lazy = h(n.right.lazy, n.lazy);
n.lazy = ei;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void Recalc(Node n)
{
if (n == null) return;
Eval(n);
if (!n.needRecalc) return;
n.needRecalc = false;
n.dat = n.val;
if (n.left != null)
{
Recalc(n.left);
n.dat = f(n.left.dat, n.dat);
}
if (n.right != null)
{
Recalc(n.right);
n.dat = f(n.dat, n.right.dat);
}
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node RotateL(Node n)
{
if (ope) { Eval(n); Eval(n.right); }
Node m = n.right, t = m.left;
m.left = n; n.right = t;
n.cnt -= m.cnt - Cnt(t);
m.cnt += n.cnt - Cnt(t);
if (ope) { n.needRecalc = true; m.needRecalc = true; }
return m;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node RotateR(Node n)
{
if (ope) { Eval(n); Eval(n.left); }
Node m = n.left, t = m.right;
m.right = n; n.left = t;
n.cnt -= m.cnt - Cnt(t);
m.cnt += n.cnt - Cnt(t);
if (ope) { n.needRecalc = true; m.needRecalc = true; }
return m;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node RotateLR(Node n)
{
n.left = RotateL(n.left);
return RotateR(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node RotateRL(Node n)
{
n.right = RotateR(n.right);
return RotateL(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(Key key, ValueT val)
{
root = Add(root, key, val);
root.isBlack = true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node Add(Node n, Key key, ValueT val)
{
if (n == null)
{
isNeedFix = true;
return new Node() { key = key, val = val, dat = val, lazy = ei, cnt = 1 };
}
if (ope) Eval(n);
if (c(key, n.key) < 0) n.left = Add(n.left, key, val);
else n.right = Add(n.right, key, val);
if (ope) n.needRecalc = true;
n.cnt++;
return Balance(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node Balance(Node n)
{
if (!isNeedFix) return n;
if (!IsBlack(n)) return n;
if (IsRed(n.left) && IsRed(n.left.left))
{
n = RotateR(n);
n.left.isBlack = true;
}
else if (IsRed(n.left) && IsRed(n.left.right))
{
n = RotateLR(n);
n.left.isBlack = true;
}
else if (IsRed(n.right) && IsRed(n.right.left))
{
n = RotateRL(n);
n.right.isBlack = true;
}
else if (IsRed(n.right) && IsRed(n.right.right))
{
n = RotateL(n);
n.right.isBlack = true;
}
else isNeedFix = false;
return n;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(Key key)
{
root = Remove(root, key);
if (root != null) root.isBlack = true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node Remove(Node n, Key key)
{
if (n == null) throw new Exception();
if (ope) Eval(n);
n.cnt--;
var r = c(key, n.key);
if (r < 0)
{
n.left = Remove(n.left, key);
if (ope) n.needRecalc = true;
return BalanceL(n);
}
if (r > 0)
{
n.right = Remove(n.right, key);
if (ope) n.needRecalc = true;
return BalanceR(n);
}
if (n.left == null)
{
isNeedFix = n.isBlack;
return n.right;
}
n.left = RemoveMax(n.left);
n.key = lmax.key;
n.val = lmax.val;
if (ope) n.needRecalc = true;
return BalanceL(n);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node RemoveMax(Node n)
{
if (ope) Eval(n);
n.cnt--;
if (n.right != null)
{
n.right = RemoveMax(n.right);
if (ope) n.needRecalc = true;
return BalanceR(n);
}
lmax = n;
isNeedFix = n.isBlack;
return n.left;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node BalanceL(Node n)
{
if (!isNeedFix) return n;
if (IsBlack(n.right) && IsRed(n.right.left))
{
var b = n.isBlack;
n = RotateRL(n);
n.isBlack = b;
n.left.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.right) && IsRed(n.right.right))
{
var b = n.isBlack;
n = RotateL(n);
n.isBlack = b;
n.right.isBlack = true;
n.left.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.right))
{
isNeedFix = n.isBlack;
n.isBlack = true;
n.right.isBlack = false;
}
else
{
n = RotateL(n);
n.isBlack = true;
n.left.isBlack = false;
n.left = BalanceL(n.left);
isNeedFix = false;
}
return n;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
Node BalanceR(Node n)
{
if (!isNeedFix) return n;
if (IsBlack(n.left) && IsRed(n.left.right))
{
var b = n.isBlack;
n = RotateLR(n);
n.isBlack = b; n.right.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.left) && IsRed(n.left.left))
{
var b = n.isBlack;
n = RotateR(n);
n.isBlack = b;
n.left.isBlack = true;
n.right.isBlack = true;
isNeedFix = false;
}
else if (IsBlack(n.left))
{
isNeedFix = n.isBlack;
n.isBlack = true;
n.left.isBlack = false;
}
else
{
n = RotateR(n);
n.isBlack = true;
n.right.isBlack = false;
n.right = BalanceR(n.right);
isNeedFix = false;
}
return n;
}
public KeyValuePair<Key, ValueT> this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return At(root, i); }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
KeyValuePair<Key, ValueT> At(Node n, long i)
{
if (ope) Eval(n);
if (n.left == null)
{
if (i == 0) return new KeyValuePair<Key, ValueT>(n.key, n.val);
else return At(n.right, i - 1);
}
if (n.left.cnt == i) return new KeyValuePair<Key, ValueT>(n.key, n.val);
if (n.left.cnt > i) return At(n.left, i);
return At(n.right, i - n.left.cnt - 1);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Have(Key key)
{
var t = LowerBound(key);
return t < Cnt(root) && c(At(root, t).Key, key) == 0;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(Key key) => UpperBound(root, key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
long UpperBound(Node n, Key key)
{
if (n == null) return 0;
var r = c(key, n.key);
if (r < 0) return UpperBound(n.left, key);
return Cnt(n.left) + 1 + UpperBound(n.right, key);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(Key key) => LowerBound(root, key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
long LowerBound(Node n, Key key)
{
if (n == null) return 0;
var r = c(key, n.key);
if (r <= 0) return LowerBound(n.left, key);
return Cnt(n.left) + 1 + LowerBound(n.right, key);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, ValueT> Min()
{
Node n = root.left, p = root;
while (n != null)
{
p = n;
if (ope) Eval(p);
n = n.left;
}
return new KeyValuePair<Key, ValueT>(p.key, p.val);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, ValueT> Max()
{
Node n = root.right, p = root;
while (n != null)
{
p = n;
if (ope) Eval(p);
n = n.right;
}
return new KeyValuePair<Key, ValueT>(p.key, p.val);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Update(long l, long r, ValueE val) => Update(root, l, r, val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
void Update(Node n, long l, long r, ValueE val)
{
if (n == null) return;
Eval(n);
n.needRecalc = true;
var lc = Cnt(n.left);
if (lc < l) Update(n.right, l - lc - 1, r - lc - 1, val);
else if (r <= lc) Update(n.left, l, r, val);
else if (l <= 0 && Cnt(n) <= r) n.lazy = val;
else
{
n.val = g(n.val, val);
if (l < lc) Update(n.left, l, lc, val);
if (lc + 1 < r) Update(n.right, 0, r - lc - 1, val);
}
return;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public ValueT Query(long l, long r) => Query(root, l, r);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
ValueT Query(Node n, long l, long r)
{
var v1 = ti; var v2 = ti; var v3 = ti;
if (n == null) return ti;
Eval(n);
var lc = Cnt(n.left);
if (lc < l) v3 = Query(n.right, l - lc - 1, r - lc - 1);
else if (r <= lc) v1 = Query(n.left, l, r);
else if (l <= 0 && Cnt(n) <= r)
{
Recalc(n);
v2 = n.dat;
}
else
{
if (l < lc) v1 = Query(n.left, l, lc);
if (lc + 1 < r) v3 = Query(n.right, 0, r - lc - 1);
v2 = n.val;
}
return f(f(v1, v2), v3);
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => root != null;
public long Count => Cnt(root);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public IEnumerable<KeyValuePair<Key, ValueT>> List() => L(root);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
IEnumerable<KeyValuePair<Key, ValueT>> L(Node n)
{
if (n == null) yield break;
foreach (var i in L(n.left)) yield return i;
yield return new KeyValuePair<Key, ValueT>(n.key, n.val);
foreach (var i in L(n.right)) yield return i;
}
}
class LIB_RedBlackTree<Key, Value>
{
LIB_RedBlackTree<Key, Value, int> tree;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(Comparison<Key> c) { tree = new LIB_RedBlackTree<Key, Value, int>(default(Value), 0, (x, y) => x, (x, y) => x, (x, y) => x, c, false); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree() : this(Comparer<Key>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(Key key, Value val) => tree.Add(key, val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(Key key) => tree.Remove(key);
public KeyValuePair<Key, Value> this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return tree[i]; }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Have(Key key) => tree.Have(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(Key key) => tree.UpperBound(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(Key key) => tree.LowerBound(key);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, Value> Min() => tree.Min();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public KeyValuePair<Key, Value> Max() => tree.Max();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => tree.Any();
public long Count => tree.Count;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public IEnumerable<KeyValuePair<Key, Value>> List() => tree.List();
}
class LIB_RedBlackTree<T>
{
LIB_RedBlackTree<T, int, int> tree;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree(Comparison<T> c) { tree = new LIB_RedBlackTree<T, int, int>(0, 0, (x, y) => x, (x, y) => x, (x, y) => x, c, false); }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public LIB_RedBlackTree() : this(Comparer<T>.Default.Compare) { }
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Add(T val) => tree.Add(val, 0);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public void Remove(T val) => tree.Remove(val);
public T this[long i]
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get { return tree[i].Key; }
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Have(T val) => tree.Have(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long UpperBound(T val) => tree.UpperBound(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public long LowerBound(T val) => tree.LowerBound(val);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T Min() => tree.Min().Key;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public T Max() => tree.Max().Key;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool Any() => tree.Any();
public long Count => tree.Count;
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public IEnumerable<T> List() => tree.List().Select(e => e.Key);
}
class LIB_FastIO
{
public LIB_FastIO() { str = Console.OpenStandardInput(); }
readonly Stream str;
readonly byte[] buf = new byte[1024];
int len, ptr;
public bool isEof = false;
public bool IsEndOfStream { get { return isEof; } }
byte read()
{
if (isEof) throw new EndOfStreamException();
if (ptr >= len)
{
ptr = 0;
if ((len = str.Read(buf, 0, 1024)) <= 0)
{
isEof = true;
return 0;
}
}
return buf[ptr++];
}
char Char()
{
byte b = 0;
do b = read();
while (b < 33 || 126 < b);
return (char)b;
}
virtual public string Scan()
{
var sb = new StringBuilder();
for (var b = Char(); b >= 33 && b <= 126; b = (char)read())
sb.Append(b);
return sb.ToString();
}
virtual public long Long()
{
long ret = 0; byte b = 0; var ng = false;
do b = read();
while (b != '-' && (b < '0' || '9' < b));
if (b == '-') { ng = true; b = read(); }
for (; true; b = read())
{
if (b < '0' || '9' < b)
return ng ? -ret : ret;
else ret = ret * 10 + b - '0';
}
}
virtual public double Double() { return double.Parse(Scan(), CultureInfo.InvariantCulture); }
}
class LIB_FastIODebug : LIB_FastIO
{
Queue<string> param = new Queue<string>();
string NextString() { if (param.Count == 0) foreach (var item in Console.ReadLine().Split(' ')) param.Enqueue(item); return param.Dequeue(); }
public LIB_FastIODebug() { }
public override string Scan() => NextString();
public override long Long() => long.Parse(NextString());
public override double Double() => double.Parse(NextString());
}
}
yupiteru_kun