結果

問題 No.1050 Zero (Maximum)
ユーザー tsutajtsutaj
提出日時 2020-05-08 21:47:56
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 21 ms / 2,000 ms
コード長 5,979 bytes
コンパイル時間 1,061 ms
コンパイル使用メモリ 112,316 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-04 00:26:20
合計ジャッジ時間 1,783 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// #define _GLIBCXX_DEBUG // for STL debug (optional)
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <string>
#include <cstring>
#include <deque>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <utility>
#include <algorithm>
#include <map>
#include <set>
#include <complex>
#include <cmath>
#include <limits>
#include <cfloat>
#include <climits>
#include <ctime>
#include <cassert>
#include <numeric>
#include <fstream>
#include <functional>
#include <bitset>
using namespace std;
using ll = long long int;
using int64 = long long int;
template<typename T> void chmax(T &a, T b) {a = max(a, b);}
template<typename T> void chmin(T &a, T b) {a = min(a, b);}
template<typename T> void chadd(T &a, T b) {a = a + b;}
int dx[] = {0, 0, 1, -1};
int dy[] = {1, -1, 0, 0};
const int INF = 1LL << 29;
const ll LONGINF = 1LL << 60;
const ll MOD = 1000000007LL;
// ModInt begin
using ll = long long;
template<ll mod>
struct ModInt {
ll v;
ll mod_pow(ll x, ll n) const {
return (!n) ? 1 : (mod_pow((x*x)%mod,n/2) * ((n&1)?x:1)) % mod;
}
ModInt(ll a = 0) : v((a %= mod) < 0 ? a + mod : a) {}
ModInt operator+ ( const ModInt& b ) const {
return (v + b.v >= mod ? ModInt(v + b.v - mod) : ModInt(v + b.v));
}
ModInt operator- () const {
return ModInt(-v);
}
ModInt operator- ( const ModInt& b ) const {
return (v - b.v < 0 ? ModInt(v - b.v + mod) : ModInt(v - b.v));
}
ModInt operator* ( const ModInt& b ) const {return (v * b.v) % mod;}
ModInt operator/ ( const ModInt& b ) const {return (v * mod_pow(b.v, mod-2)) % mod;}
bool operator== ( const ModInt &b ) const {return v == b.v;}
bool operator!= ( const ModInt &b ) const {return !(*this == b); }
ModInt& operator+= ( const ModInt &b ) {
v += b.v;
if(v >= mod) v -= mod;
return *this;
}
ModInt& operator-= ( const ModInt &b ) {
v -= b.v;
if(v < 0) v += mod;
return *this;
}
ModInt& operator*= ( const ModInt &b ) {
(v *= b.v) %= mod;
return *this;
}
ModInt& operator/= ( const ModInt &b ) {
(v *= mod_pow(b.v, mod-2)) %= mod;
return *this;
}
ModInt pow(ll x) { return ModInt(mod_pow(v, x)); }
// operator int() const { return int(v); }
// operator long long int() const { return v; }
};
template<ll mod>
ModInt<mod> pow(ModInt<mod> n, ll k) {
return ModInt<mod>(n.mod_pow(n.v, k));
}
template<ll mod>
ostream& operator<< (ostream& out, ModInt<mod> a) {return out << a.v;}
template<ll mod>
istream& operator>> (istream& in, ModInt<mod>& a) {
in >> a.v;
return in;
}
// ModInt end
using mint = ModInt<MOD>;
//
// size(): ( mat[0].size() )
// : (+=, *=, -=), (-), (+, -, *, ==)
// eigen(N): N*N
// pow(mat, k): mat k
template <typename T>
struct Matrix {
vector< vector<T> > mat;
Matrix() {}
Matrix(int h, int w, T val = T(0)) : mat(h, vector<T>(w, val)) {}
size_t size() const { return mat.size(); }
const vector<T>& operator[](int i) const { return mat[i]; }
vector<T>& operator[](int i) { return mat[i]; }
Matrix<T> &operator+=(const Matrix<T>& rhs) {
assert(mat.size() == rhs.size());
assert(mat[0].size() == rhs[0].size());
for(size_t i=0; i<mat.size(); i++) {
for(size_t j=0; j<mat[0].size(); j++) {
mat[i][j] += rhs[i][j];
}
}
return *this;
}
Matrix<T> operator-() const {
Matrix<T> res(*this);
for(size_t i=0; i<res.size(); i++) {
for(size_t j=0; j<res[0].size(); j++) {
res[i][j] *= T(-1);
}
}
return res;
}
Matrix<T>& operator-=(const Matrix<T>& rhs) {
return (Matrix<T>(*this) += -rhs);
}
Matrix<T>& operator*=(const Matrix<T>& rhs) {
assert(mat[0].size() == rhs.size());
size_t H = mat.size(), W = rhs[0].size(), C = rhs.size();
Matrix<T> res(H, W);
for(size_t i=0; i<H; i++) {
for(size_t j=0; j<W; j++) {
for(size_t k=0; k<C; k++) {
res[i][j] += mat[i][k] * rhs[k][j];
}
}
}
this->mat = res.mat;
return *this;
}
Matrix<T> operator+(const Matrix<T>& rhs) {
return (Matrix<T>(*this) += rhs);
}
Matrix<T> operator*(const Matrix<T>& rhs) {
return (Matrix<T>(*this) *= rhs);
}
Matrix<T> operator-(const Matrix<T> &rhs) {
return (Matrix<T>(*this) -= rhs);
}
bool operator==(const Matrix<T> &rhs) const {
return this->mat == rhs.mat;
}
bool operator!=(const Matrix<T> &rhs) const {
return !(*this == rhs);
}
};
template <typename T>
Matrix<T> eigen(size_t N) {
Matrix<T> res(N, N, 0);
for(size_t i=0; i<N; i++) res[i][i] = T(1);
return res;
}
template <typename T>
Matrix<T> pow(Matrix<T> mat, long long int k) {
Matrix<T> res = eigen<T>(mat.size());
for(; k>0; k>>=1) {
if(k & 1) res *= mat;
mat *= mat;
}
return res;
}
template <typename T>
ostream& operator<< (ostream& out, Matrix<T> mat) {
int H = mat.size(), W = mat[0].size();
out << "[" << endl;
for(int i=0; i<H; i++) {
out << " [ ";
for(int j=0; j<W; j++) out << mat[i][j] << " ";
out << "]" << endl;
}
out << "]" << endl;
return out;
}
using Mat = Matrix<mint>;
int main() {
ll M, K; scanf("%lld%lld", &M, &K);
Mat mat(M, M);
for(int v0=0; v0<M; v0++) {
for(int i=0; i<M; i++) {
int v1 = (v0 + i) % M;
mat[v1][v0] += mint(1);
int v2 = (v0 * i) % M;
mat[v2][v0] += mint(1);
}
}
mat = pow(mat, K);
cout << mat[0][0] << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0