結果
問題 | No.1050 Zero (Maximum) |
ユーザー |
|
提出日時 | 2020-05-08 22:03:51 |
言語 | Common Lisp (sbcl 2.5.0) |
結果 |
AC
|
実行時間 | 707 ms / 2,000 ms |
コード長 | 24,210 bytes |
コンパイル時間 | 984 ms |
コンパイル使用メモリ | 93,184 KB |
実行使用メモリ | 82,080 KB |
最終ジャッジ日時 | 2024-07-04 00:42:36 |
合計ジャッジ時間 | 5,731 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 15 |
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 04 JUL 2024 12:42:29 AM): ; file: /home/judge/data/code/Main.lisp ; in: DEFUN MOD-INVERSE ; (+ U MODULUS) ; ; note: deleting unreachable code ; in: DEFUN MOD-LOG ; (GCD X MODULUS) ; ; note: unable to ; optimize ; due to type uncertainty: ; The first argument is a INTEGER, not a (OR (INTEGER -4611686018427387904 -1) ; (INTEGER 1 4611686018427387903)). ; (* RES X) ; ; note: forced to do */UNSIGNED=>INTEGER (cost 10) ; unable to do inline fixnum arithmetic (cost 2) because: ; The result is a (VALUES (MOD 21267647932558653948014168890775961605) ; &OPTIONAL), not a (VALUES FIXNUM &OPTIONAL). ; unable to do inline (signed-byte 64) arithmetic (cost 4) because: ; The result is a (VALUES (MOD 21267647932558653948014168890775961605) ; &OPTIONAL), not a (VALUES (SIGNED-BYTE 64) ; &OPTIONAL). ; (* X^M^I X^M) ; ; note: forced to do */UNSIGNED=>INTEGER (cost 10) ; unable to do inline fixnum arithmetic (cost 2) because: ; The result is a (VALUES (MOD 21267647932558653948014168890775961605) ; &OPTIONAL), not a (VALUES FIXNUM &OPTIONAL). ; unable to do inline (signed-byte 64) arithmetic (cost 4) because: ; The result is a (VALUES (MOD 21267647932558653948014168890775961605) ; &OPTIONAL), not a (VALUES (SIGNED-BYTE 64) ; &OPTIONAL). ; (* RES X) ; ; note: forced to do */UNSIGNED=>INTEGER (cost 10) ; unable to do inline fixnum arithmetic (cost 2) because: ; The result is a (VALUES (MOD 21267647932558653948014168890775961605) ; &OPTIONAL), not a (VALUES FIXNUM &OPTIONAL). ; unable to do inline (signed-byte 64) arithmetic (cost 4
ソースコード
(eval-when (:compile-toplevel :load-toplevel :execute) (sb-int:defconstant-eqx opt #+swank '(optimize (speed 3) (safety 2)) #-swank '(optimize (speed 3) (safety 0) (debug 0)) #'equal) #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t) #-swank (set-dispatch-macro-character #\# #\> (lambda (s c p) (declare (ignore c p)) `(values ,(read s nil nil t))))) #+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax) #-swank (disable-debugger) ; for CS Academy ;; BEGIN_INSERTED_CONTENTS ;; ;; Matrix multiplication over semiring ;; ;; NOTE: These funcions are slow on SBCL version earlier than 1.5.6 as the type ;; propagation of MAKE-ARRAY doesn't work. The following files are required to ;; enable the optimization. ;; version < 1.5.0: array-element-type.lisp, make-array-header.lisp ;; version < 1.5.6: make-array-header.lisp (defun gemm! (a b c &key (op+ #'+) (op* #'*) (identity+ 0)) "Calculates C := A*B. This function destructively modifies C. (OP+, OP*) must comprise a semiring. IDENTITY+ is the identity element w.r.t. OP+." (declare ((simple-array * (* *)) a b c)) (dotimes (row (array-dimension a 0)) (dotimes (col (array-dimension b 1)) (let ((res identity+)) (dotimes (k (array-dimension a 1)) (setf res (funcall op+ (funcall op* (aref a row k) (aref b k col))))) (setf (aref c row col) res)))) c) (declaim (inline gemm)) (defun gemm (a b &key (op+ #'+) (op* #'*) (identity+ 0)) "Calculates A*B. (OP+, OP*) must comprise a semiring. IDENTITY+ is the identity element w.r.t. OP+." (declare ((simple-array * (* *)) a b) (function op+ op*)) (let ((c (make-array (list (array-dimension a 0) (array-dimension b 1)) :element-type (array-element-type a)))) (dotimes (row (array-dimension a 0)) (dotimes (col (array-dimension b 1)) (let ((res identity+)) (dotimes (k (array-dimension a 1)) (setf res (funcall op+ res (funcall op* (aref a row k) (aref b k col))))) (setf (aref c row col) res)))) c)) (declaim (inline matrix-power)) (defun matrix-power (base power &key (op+ #'+) (op* #'*) (identity+ 0) (identity* 1)) (declare ((simple-array * (* *)) base) (function op+ op*) ((integer 0 #.most-positive-fixnum) power)) (let ((size (array-dimension base 0))) (assert (= size (array-dimension base 1))) (let ((iden (make-array (array-dimensions base) :element-type (array-element-type base) :initial-element identity+))) (dotimes (i size) (setf (aref iden i i) identity*)) (labels ((recur (p) (declare ((integer 0 #.most-positive-fixnum) p)) (cond ((zerop p) iden) ((evenp p) (let ((res (recur (ash p -1)))) (gemm res res :op+ op+ :op* op* :identity+ identity+))) (t (gemm base (recur (- p 1)) :op+ op+ :op* op* :identity+ identity+))))) (recur power))))) (declaim (inline gemv)) (defun gemv (a x &key (op+ #'+) (op* #'*) (identity+ 0)) "Calculates A*x for a matrix A and a vector x. (OP+, OP*) must form a semiring. IDENTITY+ is the identity element w.r.t. OP+." (declare ((simple-array * (* *)) a) ((simple-array * (*)) x) (function op+ op*)) (let ((y (make-array (array-dimension a 0) :element-type (array-element-type x)))) (dotimes (i (length y)) (let ((res identity+)) (dotimes (j (length x)) (setf res (funcall op+ res (funcall op* (aref a i j) (aref x j))))) (setf (aref y i) res))) y)) ;;; ;;; Modular arithmetic ;;; ;; Blankinship algorithm ;; Reference: https://topcoder-g-hatena-ne-jp.jag-icpc.org/spaghetti_source/20130126/ (Japanese) (declaim (ftype (function * (values fixnum fixnum &optional)) %ext-gcd)) (defun %ext-gcd (a b) (declare (optimize (speed 3) (safety 0)) (fixnum a b)) (let ((y 1) (x 0) (u 1) (v 0)) (declare (fixnum y x u v)) (loop (when (zerop a) (return (values x y))) (let ((q (floor b a))) (decf x (the fixnum (* q u))) (rotatef x u) (decf y (the fixnum (* q v))) (rotatef y v) (decf b (the fixnum (* q a))) (rotatef b a))))) ;; Simple recursive version. A bit slower but more comprehensible. ;; https://cp-algorithms.com/algebra/extended-euclid-algorithm.html (English) ;; https://drken1215.hatenablog.com/entry/2018/06/08/210000 (Japanese) ;; (defun %ext-gcd (a b) ;; (declare (optimize (speed 3) (safety 0)) ;; (fixnum a b)) ;; (if (zerop b) ;; (values 1 0) ;; (multiple-value-bind (p q) (floor a b) ; a = pb + q ;; (multiple-value-bind (v u) (%ext-gcd b q) ;; (declare (fixnum u v)) ;; (values u (the fixnum (- v (the fixnum (* p u))))))))) ;; TODO: deal with bignums (declaim (inline ext-gcd)) (defun ext-gcd (a b) "Returns two integers X and Y which satisfy AX + BY = gcd(A, B)." (declare ((integer #.(- most-positive-fixnum) #.most-positive-fixnum) a b)) (if (>= a 0) (if (>= b 0) (%ext-gcd a b) (multiple-value-bind (x y) (%ext-gcd a (- b)) (declare (fixnum x y)) (values x (- y)))) (if (>= b 0) (multiple-value-bind (x y) (%ext-gcd (- a) b) (declare (fixnum x y)) (values (- x) y)) (multiple-value-bind (x y) (%ext-gcd (- a) (- b)) (declare (fixnum x y)) (values (- x) (- y)))))) (declaim (inline mod-inverse) (ftype (function * (values (mod #.most-positive-fixnum) &optional)) mod-inverse)) ;; (defun mod-inverse (a modulus) ;; "Solves ax ≡ 1 mod m. A and M must be coprime." ;; (declare (integer a) ;; ((integer 1 #.most-positive-fixnum) modulus)) ;; (mod (%ext-gcd (mod a modulus) modulus) modulus)) ;; FIXME: Perhaps no advantage in efficiency? Then I should use the above simple ;; code. (defun mod-inverse (a modulus) "Solves ax ≡ 1 mod m. A and M must be coprime." (declare ((integer 1 #.most-positive-fixnum) modulus)) (let ((a (mod a modulus)) (b modulus) (u 1) (v 0)) (declare (fixnum a b u v)) (loop until (zerop b) for quot = (floor a b) do (decf a (the fixnum (* quot b))) (rotatef a b) (decf u (the fixnum (* quot v))) (rotatef u v)) (setq u (mod u modulus)) (if (< u 0) (+ u modulus) u))) ;; not tested ;; TODO: move to another file (declaim (inline mod-binomial)) (defun mod-binomial (n k modulus) (declare ((integer 0 #.most-positive-fixnum) modulus)) (if (or (< n k) (< n 0) (< k 0)) 0 (let ((k (if (< k (- n k)) k (- n k))) (num 1) (denom 1)) (declare ((integer 0) k num denom)) (loop for x from n above (- n k) do (setq num (mod (* num x) modulus))) (loop for x from 1 to k do (setq denom (mod (* denom x) modulus))) (mod (* num (mod-inverse denom modulus)) modulus)))) (declaim (ftype (function * (values (or null (integer 0 #.most-positive-fixnum)) &optional)) mod-log)) (defun mod-log (x y modulus &key from-zero) "Returns the smallest positive integer k that satiefies x^k ≡ y mod p. Returns NIL if it is infeasible." (declare (optimize (speed 3)) (integer x y) ((integer 1 #.most-positive-fixnum) modulus)) (let ((x (mod x modulus)) (y (mod y modulus)) (g (gcd x modulus))) (declare (optimize (safety 0)) ((mod #.most-positive-fixnum) x y g)) (when (and from-zero (or (= y 1) (= modulus 1))) (return-from mod-log 0)) (if (= g 1) ;; coprime case (let* ((m (+ 1 (isqrt (- modulus 1)))) ; smallest integer equal to or ; larger than sqrt(p) (x^m (loop for i below m for res of-type (integer 0 #.most-positive-fixnum) = x then (mod (* res x) modulus) finally (return res))) (table (make-hash-table :size m :test 'eq))) ;; Constructs TABLE: yx^j |-> j (j = 0, ..., m-1) (loop for j from 0 below m for res of-type (integer 0 #.most-positive-fixnum) = y then (mod (* res x) modulus) do (setf (gethash res table) j)) ;; Finds i and j that satisfy (x^m)^i = yx^j and returns m*i-j (loop for i from 1 to m for x^m^i of-type (integer 0 #.most-positive-fixnum) = x^m then (mod (* x^m^i x^m) modulus) for j = (gethash x^m^i table) when j do (locally (declare ((integer 0 #.most-positive-fixnum) j)) (return (- (* i m) j))) finally (return nil))) ;; If x and p are not coprime, let g := gcd(x, p), x := gx', y := gy', p ;; := gp' and solve x^(k-1) ≡ y'x'^(-1) mod p' instead. See ;; https://math.stackexchange.com/questions/131127/ for the detail. (if (= x y) ;; This is tha special treatment for the case x ≡ y. Without this ;; (mod-log 4 0 4) returns not 1 but 2. 1 (multiple-value-bind (y-prime rem) (floor y g) (if (zerop rem) (let* ((x-prime (floor x g)) (p-prime (floor modulus g)) (next-rhs (mod (* y-prime (mod-inverse x-prime p-prime)) p-prime)) (res (mod-log x next-rhs p-prime))) (declare ((integer 0 #.most-positive-fixnum) x-prime p-prime next-rhs)) (if res (+ 1 res) nil)) nil)))))) (declaim (inline %calc-min-factor)) (defun %calc-min-factor (x alpha) "Returns k, so that x+k*alpha is the smallest non-negative number." (if (plusp alpha) (ceiling (- x) alpha) (floor (- x) alpha))) (declaim (inline %calc-max-factor)) (defun %calc-max-factor (x alpha) "Returns k, so that x+k*alpha is the largest non-positive number." (if (plusp alpha) (floor (- x) alpha) (ceiling (- x) alpha))) (defun solve-bezout (a b c &optional min max) "Returns an integer solution of a*x+b*y = c if it exists, otherwise returns (VALUES NIL NIL). If MIN is specified and MAX is null, the returned x is the smallest integer equal to or larger than MIN. If MAX is specified and MIN is null, x is the largest integer equal to or smaller than MAX. If the both are specified, x is an integer in [MIN, MAX]. This function returns NIL when no x that satisfies the given condition exists." (declare (fixnum a b c) ((or null fixnum) min max)) (let ((gcd-ab (gcd a b))) (if (zerop (mod c gcd-ab)) (multiple-value-bind (init-x init-y) (ext-gcd a b) (let* ((factor (floor c gcd-ab)) ;; m*x0 + n*y0 = d (x0 (* init-x factor)) (y0 (* init-y factor))) (if (and (null min) (null max)) (values x0 y0) (let (;; general solution: x = x0 + kΔx, y = y0 - kΔy (deltax (floor b gcd-ab)) (deltay (floor a gcd-ab))) (if min (let* ((k-min (%calc-min-factor (- x0 min) deltax)) (x (+ x0 (* k-min deltax))) (y (- y0 (* k-min deltay)))) (if (and max (> x max)) (values nil nil) (values x y))) (let* ((k-max (%calc-max-factor (- x0 max) deltax)) (x (+ x0 (* k-max deltax))) (y (- y0 (* k-max deltay)))) (if (<= x max) (values x y) (values nil nil)))))))) (values nil nil)))) ;; Reference: http://drken1215.hatenablog.com/entry/2019/03/20/202800 (Japanese) (declaim (inline mod-echelon!)) (defun mod-echelon! (matrix modulus &optional extended) "Returns the row echelon form of MATRIX by gaussian elimination and returns the rank as the second value. This function destructively modifies MATRIX." (declare ((integer 1 #.most-positive-fixnum) modulus)) (destructuring-bind (m n) (array-dimensions matrix) (declare ((integer 0 #.most-positive-fixnum) m n)) (dotimes (i m) (dotimes (j n) (setf (aref matrix i j) (mod (aref matrix i j) modulus)))) (let ((rank 0)) (dotimes (target-col (if extended (- n 1) n)) (let ((pivot-row (do ((i rank (+ 1 i))) ((= i m) -1) (unless (zerop (aref matrix i target-col)) (return i))))) (when (>= pivot-row 0) ;; swap rows (loop for j from target-col below n do (rotatef (aref matrix rank j) (aref matrix pivot-row j))) (let ((inv (mod-inverse (aref matrix rank target-col) modulus))) (dotimes (j n) (setf (aref matrix rank j) (mod (* inv (aref matrix rank j)) modulus))) (dotimes (i m) (unless (or (= i rank) (zerop (aref matrix i target-col))) (let ((factor (aref matrix i target-col))) (loop for j from target-col below n do (setf (aref matrix i j) (mod (- (aref matrix i j) (mod (* (aref matrix rank j) factor) modulus)) modulus))))))) (incf rank)))) (values matrix rank)))) ;; not tested (declaim (inline mod-determinant!)) (defun mod-determinant! (matrix modulus) "Returns the determinant of MATRIX. This function destructively modifies MATRIX." (declare ((integer 1 #.most-positive-fixnum) modulus)) (let ((n (array-dimension matrix 0))) (assert (= n (array-dimension matrix 1))) (dotimes (i n) (dotimes (j n) (setf (aref matrix i j) (mod (aref matrix i j) modulus)))) (let ((rank 0) (netto-product 1)) (declare ((integer 0 #.most-positive-fixnum) rank netto-product)) (dotimes (target-col n) (let ((pivot-row (do ((i rank (+ 1 i))) ((= i n) -1) (unless (zerop (aref matrix i target-col)) (return i))))) (when (>= pivot-row 0) ;; swap rows (loop for j from target-col below n do (rotatef (aref matrix rank j) (aref matrix pivot-row j))) (let* ((pivot (aref matrix rank target-col)) (inv (mod-inverse pivot modulus))) (setq netto-product (mod (* netto-product pivot) modulus)) (dotimes (j n) (setf (aref matrix rank j) (mod (* inv (aref matrix rank j)) modulus))) (dotimes (i n) (unless (or (= i rank) (zerop (aref matrix i target-col))) (let ((factor (aref matrix i target-col))) (loop for j from target-col below n do (setf (aref matrix i j) (mod (- (aref matrix i j) (mod (* (aref matrix rank j) factor) modulus)) modulus))))))) (incf rank)))) (let ((diag 1)) (declare ((integer 0 #.most-positive-fixnum) diag)) (dotimes (i n) (setq diag (mod (* diag (aref matrix i i)) modulus))) (values (mod (* diag netto-product) modulus) rank))))) (declaim (inline mod-inverse-matrix!)) (defun mod-inverse-matrix! (matrix modulus) "Returns the inverse of MATRIX by gaussian elimination if it exists and returns NIL otherwise. This function destructively modifies MATRIX." (declare ((integer 1 #.most-positive-fixnum) modulus)) (destructuring-bind (m n) (array-dimensions matrix) (declare ((integer 0 #.most-positive-fixnum) m n)) (assert (= m n)) (dotimes (i n) (dotimes (j n) (setf (aref matrix i j) (mod (aref matrix i j) modulus)))) (let ((result (make-array (list n n) :element-type (array-element-type matrix)))) (dotimes (i n) (setf (aref result i i) 1)) (dotimes (target n) (let ((pivot-row (do ((i target (+ 1 i))) ((= i n) -1) (unless (zerop (aref matrix i target)) (return i))))) (when (= pivot-row -1) ; when singular (return-from mod-inverse-matrix! nil)) (loop for j from target below n do (rotatef (aref matrix target j) (aref matrix pivot-row j)) (rotatef (aref result target j) (aref result pivot-row j))) (let ((inv (mod-inverse (aref matrix target target) modulus))) ;; process the pivot row (dotimes (j n) (setf (aref matrix target j) (mod (* inv (aref matrix target j)) modulus)) (setf (aref result target j) (mod (* inv (aref result target j)) modulus))) ;; eliminate the column (dotimes (i n) (unless (or (= i target) (zerop (aref matrix i target))) (let ((factor (aref matrix i target))) (dotimes (j n) (setf (aref matrix i j) (mod (- (aref matrix i j) (mod (* (aref matrix target j) factor) modulus)) modulus)) (setf (aref result i j) (mod (- (aref result i j) (mod (* (aref result target j) factor) modulus)) modulus))))))))) result))) (declaim (inline mod-solve-linear-system)) (defun mod-solve-linear-system (matrix vector modulus) "Solves Ax ≡ b and returns a root vector if it exists. Otherwise it returns NIL. In addition, this function returns the rank of A as the second value." (destructuring-bind (m n) (array-dimensions matrix) (declare ((integer 0 #.most-positive-fixnum) m n)) (assert (= n (length vector))) (let ((extended (make-array (list m (+ n 1)) :element-type (array-element-type matrix)))) (dotimes (i m) (dotimes (j n) (setf (aref extended i j) (aref matrix i j))) (setf (aref extended i n) (aref vector i))) (let ((rank (nth-value 1 (mod-echelon! extended modulus t)))) (if (loop for i from rank below m always (zerop (aref extended i n))) (let ((result (make-array m :element-type (array-element-type matrix) :initial-element 0))) (dotimes (i rank) (setf (aref result i) (aref extended i n))) (values result rank)) (values nil rank)))))) ;;; ;;; Arithmetic operations with static modulus ;;; ;; FIXME: Currently MOD* and MOD+ doesn't apply MOD when the number of ;; parameters is one. (defmacro define-mod-operations (divisor) `(progn (defun mod* (&rest args) (reduce (lambda (x y) (mod (* x y) ,divisor)) args)) (defun mod+ (&rest args) (reduce (lambda (x y) (mod (+ x y) ,divisor)) args)) #+sbcl (eval-when (:compile-toplevel :load-toplevel :execute) (locally (declare (muffle-conditions warning)) (sb-c:define-source-transform mod* (&rest args) (if (null args) 1 (reduce (lambda (x y) `(mod (* ,x ,y) ,',divisor)) args))) (sb-c:define-source-transform mod+ (&rest args) (if (null args) 0 (reduce (lambda (x y) `(mod (+ ,x ,y) ,',divisor)) args))))) (define-modify-macro incfmod (delta) (lambda (x y) (mod (+ x y) ,divisor))) (define-modify-macro decfmod (delta) (lambda (x y) (mod (- x y) ,divisor))) (define-modify-macro mulfmod (multiplier) (lambda (x y) (mod (* x y) ,divisor))))) (in-package :cl-user) (defmacro dbg (&rest forms) #+swank (if (= (length forms) 1) `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms)) `(format *error-output* "~A => ~A~%" ',forms `(,,@forms))) #-swank (declare (ignore forms))) (defmacro define-int-types (&rest bits) `(progn ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits) ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits))) (define-int-types 2 4 7 8 15 16 31 32 62 63 64) (declaim (inline println)) (defun println (obj &optional (stream *standard-output*)) (let ((*read-default-float-format* 'double-float)) (prog1 (princ obj stream) (terpri stream)))) (defconstant +mod+ 1000000007) ;;; ;;; Body ;;; (define-mod-operations +mod+) (defun main () (let* ((m (read)) (k (read)) (mat (make-array (list m m) :element-type 'uint31 :initial-element 0))) (dotimes (base m) (dotimes (delta m) (let ((sum (mod (+ base delta) m))) (incf (aref mat sum base)))) (dotimes (multiplier m) (let ((prod (mod (* base multiplier) m))) (incf (aref mat prod base))))) #>mat (let ((mat (matrix-power mat k :op+ #'mod+ :op* #'mod*)) (res 0)) (println (aref mat 0 0))))) #-swank (main) ;;; ;;; Test and benchmark ;;; #+swank (defun io-equal (in-string out-string &key (function #'main) (test #'equal)) "Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if the string output to *STANDARD-OUTPUT* is equal to OUT-STRING." (labels ((ensure-last-lf (s) (if (eql (uiop:last-char s) #\Linefeed) s (uiop:strcat s uiop:+lf+)))) (funcall test (ensure-last-lf out-string) (with-output-to-string (out) (let ((*standard-output* out)) (with-input-from-string (*standard-input* (ensure-last-lf in-string)) (funcall function))))))) #+swank (defun get-clipbrd () (with-output-to-string (out) (run-program "powershell.exe" '("-Command" "Get-Clipboard") :output out :search t))) #+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname)) #+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*)) #+swank (defun run (&optional thing (out *standard-output*)) "THING := null | string | symbol | pathname null: run #'MAIN using the text on clipboard as input. string: run #'MAIN using the string as input. symbol: alias of FIVEAM:RUN!. pathname: run #'MAIN using the text file as input." (let ((*standard-output* out)) (etypecase thing (null (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd))) (main))) (string (with-input-from-string (*standard-input* (delete #\Return thing)) (main))) (symbol (5am:run! thing)) (pathname (with-open-file (*standard-input* thing) (main)))))) #+swank (defun gen-dat () (uiop:with-output-file (out *dat-pathname* :if-exists :supersede) (format out ""))) #+swank (defun bench (&optional (out (make-broadcast-stream))) (time (run *dat-pathname* out))) ;; To run: (5am:run! :sample) #+swank (it.bese.fiveam:test :sample (it.bese.fiveam:is (common-lisp-user::io-equal "3 1 " "4 ")) (it.bese.fiveam:is (common-lisp-user::io-equal "10 53 " "268129654 ")) (it.bese.fiveam:is (common-lisp-user::io-equal "50 100 " "429346442 ")))