結果
| 問題 |
No.1050 Zero (Maximum)
|
| コンテスト | |
| ユーザー |
yukinon0808
|
| 提出日時 | 2020-05-08 22:13:11 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 35 ms / 2,000 ms |
| コード長 | 7,478 bytes |
| コンパイル時間 | 1,841 ms |
| コンパイル使用メモリ | 178,576 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-07-04 00:49:01 |
| 合計ジャッジ時間 | 2,699 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 15 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define REP(i, n) for (int i=0; i<(n); ++i)
#define RREP(i, n) for (int i=(int)(n)-1; i>=0; --i)
#define FOR(i, a, n) for (int i=(a); i<(n); ++i)
#define RFOR(i, a, n) for (int i=(int)(n)-1; i>=(a); --i)
#define SZ(x) ((int)(x).size())
#define ALL(x) (x).begin(),(x).end()
#define DUMP(x) cerr<<#x<<" = "<<(x)<<endl
#define DEBUG(x) cerr<<#x<<" = "<<(x)<<" (L"<<__LINE__<<")"<<endl;
template<class T>
ostream &operator<<(ostream &os, const vector <T> &v) {
os << "[";
REP(i, SZ(v)) {
if (i) os << ", ";
os << v[i];
}
return os << "]";
}
template<class T, class U>
ostream &operator<<(ostream &os, const pair <T, U> &p) {
return os << "(" << p.first << " " << p.second << ")";
}
template<class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template<class T>
bool chmin(T &a, const T &b) {
if (b < a) {
a = b;
return true;
}
return false;
}
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using P = pair<int, int>;
using vi = vector<int>;
using vll = vector<ll>;
using vvi = vector<vi>;
using vvll = vector<vll>;
const ll MOD = 1e9 + 7;
const int INF = INT_MAX / 2;
const ll LINF = LLONG_MAX / 2;
const ld eps = 1e-9;
template<int64_t mod>
struct modint {
using LL = int64_t;
LL val;
modint(LL val=0) : val(((val % mod) + mod) % mod) {}
const modint operator+() const { return *this; }
const modint operator-() const { return (-val + mod) % mod; }
const modint inv() const { return pow(mod-2); }
modint& operator+=(const modint& rhs) {
(val += rhs.val) %= mod;
return *this;
}
modint& operator-=(const modint& rhs) {
return *this += -rhs;
}
modint& operator*=(const modint& rhs) {
(val *= rhs.val) %= mod;
return *this;
}
modint& operator/=(const modint& rhs) {
return *this *= rhs.inv();
}
const modint operator+(const modint& rhs) const {
return modint(*this) += rhs;
}
const modint operator-(const modint& rhs) const {
return modint(*this) -= rhs;
}
const modint operator*(const modint& rhs) const {
return modint(*this) *= rhs;
}
const modint operator/(const modint& rhs) const {
return modint(*this) /= rhs;
}
const modint pow(LL n) const {
modint ret = 1, tmp = val;
while (n) {
if (n & 1) ret *= tmp;
tmp *= tmp; n >>= 1;
}
return ret;
}
bool operator==(const modint& rhs) const { return val == rhs.val; }
bool operator!=(const modint& rhs) const { return !(*this == rhs); }
friend const modint operator+(const LL& lhs, const modint& rhs) {
return modint(lhs) + rhs;
}
friend const modint operator-(const LL& lhs, const modint& rhs) {
return modint(lhs) - rhs;
}
friend const modint operator*(const LL& lhs, const modint& rhs) {
return modint(lhs) * rhs;
}
friend const modint operator/(const LL& lhs, const modint& rhs) {
return modint(lhs) / rhs;
}
friend bool operator==(const LL& lhs, const modint& rhs) {
return modint(lhs) == rhs;
}
friend bool operator!=(const LL& lhs, const modint& rhs) {
return modint(lhs) != rhs;
}
friend ostream& operator<<(ostream& os, const modint& a) {
return os << a.val;
}
friend istream& operator>>(istream& is, modint& a) {
LL tmp; is >> tmp;
a = tmp;
return is;
}
};
template<typename T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m)) {}
Matrix(size_t n) : A(n, vector<T>(n)) {};
size_t height() const {
return (A.size());
}
size_t width() const {
return (A[0].size());
}
inline const vector<T>& operator[](int k) const {
return (A.at(k));
}
inline vector<T>& operator[](int k) {
return (A.at(k));
}
static Matrix I(size_t n) {
Matrix B(n);
for (int i = 0; i < n; ++i) B[i][i] = 1;
return (B);
}
Matrix operator-() const {
size_t n = height(), m = width();
Matrix B = *this;
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
B[i][j] = -B[i][j];
return (B);
}
Matrix& operator+=(const Matrix& B) {
size_t n = height(), m = width();
assert(n == B.height() and m == B.width());
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
A[i][j] += B[i][j];
return (*this);
}
Matrix& operator-=(const Matrix& B) {
return (*this += -B);
}
Matrix& operator*=(const Matrix& B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
Matrix C(n, m);
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
for (int k = 0; k < p; ++k)
C[i][j] += A[i][k] * B[k][j];
A.swap(C.A);
return (*this);
}
Matrix pow(int64_t k) {
Matrix B = Matrix::I(height()), tmp = *this;
while (k) {
if (k & 1) B *= tmp;
tmp *= tmp; k >>= 1;
}
return (B);
}
const Matrix operator+(const Matrix& B) const {
return (Matrix(*this) += B);
}
const Matrix operator-(const Matrix& B) const {
return (Matrix(*this) -= B);
}
const Matrix operator*(const Matrix& B) const {
return (Matrix(*this) *= B);
}
int GaussJordanElimination() {
int rank = 0;
for (int col = 0; col < width(); ++col) {
int pivot = -1;
for (int row = rank; row < height(); ++row) {
if (A[row][col] != 0) {
pivot = row;
break;
}
}
if (pivot == -1) continue;
swap(A[rank], A[pivot]);
T topLeft = A[rank][col];
for (int c = col; c < width(); ++c) {
A[rank][c] /= topLeft;
}
for (int row = rank+1; row < height(); ++row) {
T ratio = A[row][col];
for (int c = col; c < width(); ++c)
A[row][c] -= ratio * A[rank][c];
}
++rank;
}
return (rank);
}
friend istream& operator>>(istream& is, Matrix& B) {
is >> B.A;
return (is);
}
friend ostream& operator<<(ostream& os, Matrix& B) {
size_t n = B.height(), m = B.width();
for (int i = 0; i < n; ++i) {
os << (i == 0 ? "[" : " ");
for (int j = 0; j < m; ++j) {
os << B[i][j] << (j == m-1 ? "]" : ",");
}
os << (i == n-1 ? "]\n" : ",\n");
}
return (os);
}
};
int main() {
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
// ifstream in("in.txt");
// cin.rdbuf(in.rdbuf());
ll M, K; cin >> M >> K;
using Int = modint<MOD>;
Matrix<Int> A(M, M);
REP(i, M) {
REP(j, M) {
A[i][(i + j) % M] += 1;
A[i][(i * j) % M] += 1;
}
}
Matrix<Int> p(1, M);
p[0][0] = 1;
p = p * A.pow(K);
cout << p[0][0] << endl;
return 0;
}
yukinon0808