結果
問題 | No.1050 Zero (Maximum) |
ユーザー | FF256grhy |
提出日時 | 2020-05-08 22:17:47 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 34 ms / 2,000 ms |
コード長 | 5,643 bytes |
コンパイル時間 | 2,366 ms |
コンパイル使用メモリ | 211,580 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-04 00:51:57 |
合計ジャッジ時間 | 3,358 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
6,816 KB |
testcase_01 | AC | 7 ms
6,940 KB |
testcase_02 | AC | 8 ms
6,944 KB |
testcase_03 | AC | 22 ms
6,944 KB |
testcase_04 | AC | 31 ms
6,944 KB |
testcase_05 | AC | 28 ms
6,940 KB |
testcase_06 | AC | 23 ms
6,940 KB |
testcase_07 | AC | 25 ms
6,940 KB |
testcase_08 | AC | 23 ms
6,940 KB |
testcase_09 | AC | 22 ms
6,940 KB |
testcase_10 | AC | 28 ms
6,944 KB |
testcase_11 | AC | 26 ms
6,940 KB |
testcase_12 | AC | 22 ms
6,940 KB |
testcase_13 | AC | 3 ms
6,948 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 7 ms
6,940 KB |
testcase_16 | AC | 30 ms
6,940 KB |
testcase_17 | AC | 34 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using LL = long long int; #define incID(i, l, r) for(int i = (l) ; i < (r); ++i) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i) #define incII(i, l, r) for(int i = (l) ; i <= (r); ++i) #define decII(i, l, r) for(int i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define dec(i, n) decID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define MT make_tuple #define FI first #define SE second #define FR front() #define BA back() #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); }; auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); }; auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); }; auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); }; #define SI(v) static_cast<int>(v.size()) #define RF(e, v) for(auto & e: v) #define until(e) while(! (e)) #define if_not(e) if(! (e)) #define ef else if #define UR assert(false) #define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__); void IN_() { }; template<typename T, typename ... U> void IN_(T & a, U & ... b) { cin >> a; IN_(b ...); }; template<typename T > void OUT(T && a ) { cout << a << endl; } template<typename T, typename ... U> void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); } // ---- ---- template<typename T, int N> struct Matrix { vector<vector<T>> v; Matrix(T t) { init(); inc(i, N) { v[i][i] = t; } } Matrix(vector<vector<T>> const & w = { }) { init(w); } void init(vector<vector<T>> const & w = { }) { v = vector<vector<T>>(N, vector<T>(N, 0)); assert(w.size() <= N); inc(i, w.size()) { assert(w[i].size() <= N); inc(j, w[i].size()) { v[i][j] = w[i][j]; } } } vector<T> const & operator[](int i) const { return v[i]; } vector<T> & operator[](int i) { return v[i]; } friend Matrix operator+(Matrix const & a, Matrix const & b) { Matrix c; inc(i, N) { inc(j, N) { c[i][j] = a[i][j] + b[i][j]; } } return c; } friend Matrix operator-(Matrix const & a, Matrix const & b) { Matrix c; inc(i, N) { inc(j, N) { c[i][j] = a[i][j] - b[i][j]; } } return c; } friend Matrix operator*(Matrix const & a, Matrix const & b) { Matrix c; inc(i, N) { inc(j, N) { inc(k, N) { c[i][j] += a[i][k] * b[k][j]; } } } return c; } friend Matrix operator^(Matrix const & a, LL b) { Matrix c(1), e = a; assert(b >= 0); while(b) { if(b & 1) { c *= e; } e *= e; b >>= 1; } return c; } friend Matrix & operator+=(Matrix & a, Matrix const & b) { return (a = a + b); } friend Matrix & operator-=(Matrix & a, Matrix const & b) { return (a = a - b); } friend Matrix & operator*=(Matrix & a, Matrix const & b) { return (a = a * b); } friend Matrix & operator^=(Matrix & a, LL b) { return (a = a ^ b); } friend ostream & operator<<(ostream & os, Matrix const & m) { inc(i, N) { inc(j, N) { os << m[i][j] << " "; } os << endl; } return os; } }; // ---- template<LL M> class ModInt { private: LL v; pair<LL, LL> ext_gcd(LL a, LL b) { if(b == 0) { assert(a == 1); return { 1, 0 }; } auto p = ext_gcd(b, a % b); return { p.SE, p.FI - (a / b) * p.SE }; } public: ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } } LL get_v() { return v; } ModInt inv() { return ext_gcd(M, v).SE; } ModInt exp(LL b) { ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; } while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; } return p; } friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); } friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); } friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); } friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); } friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); } friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); } friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); } friend ModInt operator- (ModInt a ) { return ModInt(-a.v); } friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); } friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); } friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); } friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); } friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); } friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); } friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); } friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); } friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); } friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); } friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; } friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); } }; // ---- using MI = ModInt< 1'000'000'007 >; int main() { IN(int, m, k); Matrix<MI, 50> a, b; inc(i, m) { inc(j, m) { a[i][(i + j) % m] += 1; a[i][(i * j) % m] += 1; } } b[0][0] = 1; OUT((b * (a ^ k))[0][0]); }