結果
問題 | No.1050 Zero (Maximum) |
ユーザー |
![]() |
提出日時 | 2020-05-08 22:17:47 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 37 ms / 2,000 ms |
コード長 | 5,643 bytes |
コンパイル時間 | 2,828 ms |
コンパイル使用メモリ | 202,492 KB |
最終ジャッジ日時 | 2025-01-10 08:53:48 |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 15 |
ソースコード
#include <bits/stdc++.h>using namespace std;using LL = long long int;#define incID(i, l, r) for(int i = (l) ; i < (r); ++i)#define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i)#define incII(i, l, r) for(int i = (l) ; i <= (r); ++i)#define decII(i, l, r) for(int i = (r) ; i >= (l); --i)#define inc(i, n) incID(i, 0, n)#define dec(i, n) decID(i, 0, n)#define inc1(i, n) incII(i, 1, n)#define dec1(i, n) decII(i, 1, n)#define inID(v, l, r) ((l) <= (v) && (v) < (r))#define inII(v, l, r) ((l) <= (v) && (v) <= (r))#define PB push_back#define EB emplace_back#define MP make_pair#define MT make_tuple#define FI first#define SE second#define FR front()#define BA back()#define ALL(v) v.begin(), v.end()#define RALL(v) v.rbegin(), v.rend()auto setmin = [](auto & a, auto b) { return (b < a ? a = b, true : false); };auto setmax = [](auto & a, auto b) { return (b > a ? a = b, true : false); };auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };#define SI(v) static_cast<int>(v.size())#define RF(e, v) for(auto & e: v)#define until(e) while(! (e))#define if_not(e) if(! (e))#define ef else if#define UR assert(false)#define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__);void IN_() { };template<typename T, typename ... U> void IN_(T & a, U & ... b) { cin >> a; IN_(b ...); };template<typename T > void OUT(T && a ) { cout << a << endl; }template<typename T, typename ... U> void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); }// ---- ----template<typename T, int N> struct Matrix {vector<vector<T>> v;Matrix(T t) {init();inc(i, N) { v[i][i] = t; }}Matrix(vector<vector<T>> const & w = { }) { init(w); }void init(vector<vector<T>> const & w = { }) {v = vector<vector<T>>(N, vector<T>(N, 0));assert(w.size() <= N);inc(i, w.size()) { assert(w[i].size() <= N);inc(j, w[i].size()) {v[i][j] = w[i][j];}}}vector<T> const & operator[](int i) const { return v[i]; }vector<T> & operator[](int i) { return v[i]; }friend Matrix operator+(Matrix const & a, Matrix const & b) {Matrix c;inc(i, N) {inc(j, N) {c[i][j] = a[i][j] + b[i][j];}}return c;}friend Matrix operator-(Matrix const & a, Matrix const & b) {Matrix c;inc(i, N) {inc(j, N) {c[i][j] = a[i][j] - b[i][j];}}return c;}friend Matrix operator*(Matrix const & a, Matrix const & b) {Matrix c;inc(i, N) {inc(j, N) {inc(k, N) {c[i][j] += a[i][k] * b[k][j];}}}return c;}friend Matrix operator^(Matrix const & a, LL b) {Matrix c(1), e = a; assert(b >= 0);while(b) { if(b & 1) { c *= e; } e *= e; b >>= 1; }return c;}friend Matrix & operator+=(Matrix & a, Matrix const & b) { return (a = a + b); }friend Matrix & operator-=(Matrix & a, Matrix const & b) { return (a = a - b); }friend Matrix & operator*=(Matrix & a, Matrix const & b) { return (a = a * b); }friend Matrix & operator^=(Matrix & a, LL b) { return (a = a ^ b); }friend ostream & operator<<(ostream & os, Matrix const & m) {inc(i, N) {inc(j, N) {os << m[i][j] << " ";} os << endl;} return os;}};// ----template<LL M> class ModInt {private:LL v;pair<LL, LL> ext_gcd(LL a, LL b) {if(b == 0) { assert(a == 1); return { 1, 0 }; }auto p = ext_gcd(b, a % b);return { p.SE, p.FI - (a / b) * p.SE };}public:ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }LL get_v() { return v; }ModInt inv() { return ext_gcd(M, v).SE; }ModInt exp(LL b) {ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }return p;}friend bool operator< (ModInt a, ModInt b) { return (a.v < b.v); }friend bool operator> (ModInt a, ModInt b) { return (a.v > b.v); }friend bool operator<=(ModInt a, ModInt b) { return (a.v <= b.v); }friend bool operator>=(ModInt a, ModInt b) { return (a.v >= b.v); }friend bool operator==(ModInt a, ModInt b) { return (a.v == b.v); }friend bool operator!=(ModInt a, ModInt b) { return (a.v != b.v); }friend ModInt operator+ (ModInt a ) { return ModInt(+a.v); }friend ModInt operator- (ModInt a ) { return ModInt(-a.v); }friend ModInt operator+ (ModInt a, ModInt b) { return ModInt(a.v + b.v); }friend ModInt operator- (ModInt a, ModInt b) { return ModInt(a.v - b.v); }friend ModInt operator* (ModInt a, ModInt b) { return ModInt(a.v * b.v); }friend ModInt operator/ (ModInt a, ModInt b) { return a * b.inv(); }friend ModInt operator^ (ModInt a, LL b) { return a.exp(b); }friend ModInt & operator+=(ModInt & a, ModInt b) { return (a = a + b); }friend ModInt & operator-=(ModInt & a, ModInt b) { return (a = a - b); }friend ModInt & operator*=(ModInt & a, ModInt b) { return (a = a * b); }friend ModInt & operator/=(ModInt & a, ModInt b) { return (a = a / b); }friend ModInt & operator^=(ModInt & a, LL b) { return (a = a ^ b); }friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }friend ostream & operator<<(ostream & s, ModInt b) { return (s << b.v); }};// ----using MI = ModInt< 1'000'000'007 >;int main() {IN(int, m, k);Matrix<MI, 50> a, b;inc(i, m) {inc(j, m) {a[i][(i + j) % m] += 1;a[i][(i * j) % m] += 1;}}b[0][0] = 1;OUT((b * (a ^ k))[0][0]);}