結果

問題 No.1050 Zero (Maximum)
ユーザー FF256grhyFF256grhy
提出日時 2020-05-08 22:17:47
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 34 ms / 2,000 ms
コード長 5,643 bytes
コンパイル時間 2,366 ms
コンパイル使用メモリ 211,580 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-04 00:51:57
合計ジャッジ時間 3,358 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 3 ms
6,816 KB
testcase_01 AC 7 ms
6,940 KB
testcase_02 AC 8 ms
6,944 KB
testcase_03 AC 22 ms
6,944 KB
testcase_04 AC 31 ms
6,944 KB
testcase_05 AC 28 ms
6,940 KB
testcase_06 AC 23 ms
6,940 KB
testcase_07 AC 25 ms
6,940 KB
testcase_08 AC 23 ms
6,940 KB
testcase_09 AC 22 ms
6,940 KB
testcase_10 AC 28 ms
6,944 KB
testcase_11 AC 26 ms
6,940 KB
testcase_12 AC 22 ms
6,940 KB
testcase_13 AC 3 ms
6,948 KB
testcase_14 AC 4 ms
6,940 KB
testcase_15 AC 7 ms
6,940 KB
testcase_16 AC 30 ms
6,940 KB
testcase_17 AC 34 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using LL = long long int;
#define incID(i, l, r) for(int i = (l)    ; i <  (r); ++i)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); --i)
#define incII(i, l, r) for(int i = (l)    ; i <= (r); ++i)
#define decII(i, l, r) for(int i = (r)    ; i >= (l); --i)
#define inc(i, n)  incID(i, 0, n)
#define dec(i, n)  decID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define MT make_tuple
#define FI first
#define SE second
#define FR front()
#define BA back()
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
auto setmin   = [](auto & a, auto b) { return (b <  a ? a = b, true : false); };
auto setmax   = [](auto & a, auto b) { return (b >  a ? a = b, true : false); };
auto setmineq = [](auto & a, auto b) { return (b <= a ? a = b, true : false); };
auto setmaxeq = [](auto & a, auto b) { return (b >= a ? a = b, true : false); };
#define SI(v) static_cast<int>(v.size())
#define RF(e, v) for(auto & e: v)
#define until(e) while(! (e))
#define if_not(e) if(! (e))
#define ef else if
#define UR assert(false)
#define IN(T, ...) T __VA_ARGS__; IN_(__VA_ARGS__);
void IN_() { };
template<typename T, typename ... U> void IN_(T &  a, U &  ... b) { cin >> a; IN_(b ...); };
template<typename T                > void OUT(T && a            ) { cout << a << endl; }
template<typename T, typename ... U> void OUT(T && a, U && ... b) { cout << a << " "; OUT(b ...); }

// ---- ----

template<typename T, int N> struct Matrix {
	vector<vector<T>> v;
	Matrix(T t) {
		init();
		inc(i, N) { v[i][i] = t; }
	}
	Matrix(vector<vector<T>> const & w = { }) { init(w); }
	void init(vector<vector<T>> const & w = { }) {
		v = vector<vector<T>>(N, vector<T>(N, 0));
		assert(w.size() <= N);
		inc(i, w.size()) { assert(w[i].size() <= N);
		inc(j, w[i].size()) {
			v[i][j] = w[i][j];
		}
		}
	}
	vector<T> const & operator[](int i) const { return v[i]; }
	vector<T>       & operator[](int i)       { return v[i]; }
	friend Matrix operator+(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
			c[i][j] = a[i][j] + b[i][j];
		}
		}
		return c;
	}
	friend Matrix operator-(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
			c[i][j] = a[i][j] - b[i][j];
		}
		}
		return c;
	}
	friend Matrix operator*(Matrix const & a, Matrix const & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
		inc(k, N) {
			c[i][j] += a[i][k] * b[k][j];
		}
		}
		}
		return c;
	}
	friend Matrix operator^(Matrix const & a, LL b) {
		Matrix c(1), e = a; assert(b >= 0);
		while(b) { if(b & 1) { c *= e; } e *= e; b >>= 1; }
		return c;
	}
	friend Matrix & operator+=(Matrix & a, Matrix const & b) { return (a = a + b); }
	friend Matrix & operator-=(Matrix & a, Matrix const & b) { return (a = a - b); }
	friend Matrix & operator*=(Matrix & a, Matrix const & b) { return (a = a * b); }
	friend Matrix & operator^=(Matrix & a, LL             b) { return (a = a ^ b); }
	friend ostream & operator<<(ostream & os, Matrix const & m) {
		inc(i, N) {
		inc(j, N) {
			os << m[i][j] << " ";
		} os << endl;
		} return os;
	}
};

// ----

template<LL M> class ModInt {
private:
	LL v;
	pair<LL, LL> ext_gcd(LL a, LL b) {
		if(b == 0) { assert(a == 1); return { 1, 0 }; }
		auto p = ext_gcd(b, a % b);
		return { p.SE, p.FI - (a / b) * p.SE };
	}
public:
	ModInt(LL vv = 0) { v = vv; if(abs(v) >= M) { v %= M; } if(v < 0) { v += M; } }
	LL get_v() { return v; }
	ModInt inv() { return ext_gcd(M, v).SE; }
	ModInt exp(LL b) {
		ModInt p = 1, a = v; if(b < 0) { a = a.inv(); b = -b; }
		while(b) { if(b & 1) { p *= a; } a *= a; b >>= 1; }
		return p;
	}
	friend bool      operator< (ModInt    a, ModInt   b) { return (a.v <  b.v); }
	friend bool      operator> (ModInt    a, ModInt   b) { return (a.v >  b.v); }
	friend bool      operator<=(ModInt    a, ModInt   b) { return (a.v <= b.v); }
	friend bool      operator>=(ModInt    a, ModInt   b) { return (a.v >= b.v); }
	friend bool      operator==(ModInt    a, ModInt   b) { return (a.v == b.v); }
	friend bool      operator!=(ModInt    a, ModInt   b) { return (a.v != b.v); }
	friend ModInt    operator+ (ModInt    a            ) { return ModInt(+a.v); }
	friend ModInt    operator- (ModInt    a            ) { return ModInt(-a.v); }
	friend ModInt    operator+ (ModInt    a, ModInt   b) { return ModInt(a.v + b.v); }
	friend ModInt    operator- (ModInt    a, ModInt   b) { return ModInt(a.v - b.v); }
	friend ModInt    operator* (ModInt    a, ModInt   b) { return ModInt(a.v * b.v); }
	friend ModInt    operator/ (ModInt    a, ModInt   b) { return a * b.inv(); }
	friend ModInt    operator^ (ModInt    a, LL       b) { return a.exp(b); }
	friend ModInt  & operator+=(ModInt  & a, ModInt   b) { return (a = a + b); }
	friend ModInt  & operator-=(ModInt  & a, ModInt   b) { return (a = a - b); }
	friend ModInt  & operator*=(ModInt  & a, ModInt   b) { return (a = a * b); }
	friend ModInt  & operator/=(ModInt  & a, ModInt   b) { return (a = a / b); }
	friend ModInt  & operator^=(ModInt  & a, LL       b) { return (a = a ^ b); }
	friend istream & operator>>(istream & s, ModInt & b) { s >> b.v; b = ModInt(b.v); return s; }
	friend ostream & operator<<(ostream & s, ModInt   b) { return (s << b.v); }
};

// ----

using MI = ModInt< 1'000'000'007 >;

int main() {
	IN(int, m, k);
	Matrix<MI, 50> a, b;
	inc(i, m) {
	inc(j, m) {
		a[i][(i + j) % m] += 1;
		a[i][(i * j) % m] += 1;
	}
	}
	b[0][0] = 1;
	
	OUT((b * (a ^ k))[0][0]);
}
0