結果
問題 | No.1050 Zero (Maximum) |
ユーザー | walkre |
提出日時 | 2020-05-08 22:18:59 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 31 ms / 2,000 ms |
コード長 | 6,726 bytes |
コンパイル時間 | 1,665 ms |
コンパイル使用メモリ | 179,076 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-04 00:52:35 |
合計ジャッジ時間 | 2,437 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 8 ms
6,944 KB |
testcase_03 | AC | 6 ms
6,940 KB |
testcase_04 | AC | 20 ms
6,940 KB |
testcase_05 | AC | 21 ms
6,940 KB |
testcase_06 | AC | 10 ms
6,940 KB |
testcase_07 | AC | 12 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | AC | 6 ms
6,940 KB |
testcase_10 | AC | 26 ms
6,944 KB |
testcase_11 | AC | 18 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 28 ms
6,940 KB |
testcase_17 | AC | 31 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using i64 = int64_t; #define rep(i, x, y) for (i64 i = i64(x), i##_max_for_repmacro = i64(y); i < i##_max_for_repmacro; ++i) #define debug(x) #x << "=" << (x) #ifdef DEBUG #define _GLIBCXX_DEBUG #define print(x) std::cerr << debug(x) << " (L:" << __LINE__ << ")" << std::endl #else #define print(x) #endif template <i64 p> class fp { public: i64 x; fp() : x(0) {} fp(i64 x_) : x((x_ % p + p) % p) {} fp operator+() const { return fp(x); } fp operator-() const { return fp(-x); } fp& operator+=(const fp& y) { x += y.x; if (x >= p) x -= p; return *this; } fp& operator-=(const fp& y) { return *this += -y; } fp& operator*=(const fp& y) { x = x * y.x % p; return *this; } fp& operator/=(const fp& y) { return *this *= fp(inverse(y.x)); } fp operator+(const fp& y) const { return fp(x) += y; } fp operator-(const fp& y) const { return fp(x) -= y; } fp operator*(const fp& y) const { return fp(x) *= y; } fp operator/(const fp& y) const { return fp(x) /= y; } bool operator==(const fp& y) const { return x == y.x; } bool operator!=(const fp& y) const { return !(*this == y); } i64 extgcd(i64 a, i64 b, i64& x, i64& y) { i64 d = a; if (b != 0) { d = extgcd(b, a % b, y, x); y -= (a / b) * x; } else { x = 1; y = 0; } return d; } i64 inverse(i64 a) { i64 x, y; extgcd(a, p, x, y); return (x % p + p) % p; } }; template <i64 p> i64 abs(const fp<p>& x) { return x.x; } template <i64 p> istream& operator>>(istream& is, fp<p>& x) { is >> x.x; return is; } template <i64 p> ostream& operator<<(ostream& os, const fp<p>& x) { os << x.x; return os; } template <typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << "(" << p.first << ", " << p.second << ")"; return os; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& vec) { os << "["; for (const auto& v : vec) { os << v << ","; } os << "]"; return os; } template <typename T> bool chmin(T& a, const T& b) { if (a > b) { a = b; return true; } return false; } template <typename T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return true; } return false; } template <typename A, typename T, size_t size> void fill(A (&ary)[size], const T& val) { fill((T*)ary, (T*)(ary + size), val); } constexpr int inf = 1.01e9; constexpr i64 inf64 = 4.01e18; constexpr long double eps = 1e-9; // double(64bit浮動小数)のn分探索のループ回数の上限(2分探索なら50でも十分かもしれない). long double(80ビットの x87 浮動小数点型?)だと, 2分探索であってもこれだと足りないケースがある気がするので, もうちょっと余裕を持たせた方が良さそう. constexpr i64 max_loop = 100; template <class K> class matrix { public: int m, n; vector<vector<K>> a; matrix(int m_, int n_) : m(m_), n(n_), a(m_, vector<K>(n_)) {} matrix(const vector<vector<K>>& v) : m(v.size()), n((v.size() == 0 or v[0].size() == 0) ? 0 : v[0].size()), a(v) {} //matrix(const matrix<K>& other)=default; //~matrix()=default; vector<K>& operator[](int i) { assert(0 <= i); assert(i < m); return a[i]; } matrix<K> operator+() const { return *this; } matrix<K> operator-() const { return K(-1) * *this; } K at(int i, int j) const { return a[i][j]; } matrix<K>& operator=(const matrix<K>& other) = default; matrix<K>& operator+=(const matrix<K>& other) { assert(m == other.m); assert(n == other.n); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) (*this)[i][j] += other[i][j]; return *this; } matrix<K>& operator-=(const matrix<K>& other) { return (*this) += -other; } matrix<K>& operator*=(const matrix<K>& other) { assert(n == other.m); vector<vector<K>> b(m, vector<K>(other.n)); for (int i = 0; i < m; ++i) for (int j = 0; j < other.n; ++j) for (int k = 0; k < n; ++k) b[i][j] += (*this)[i][k] * other.at(k, j); a = b; n = other.n; return *this; } matrix<K>& operator/=(const K& k) { assert(k != K(0)); for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) (*this)[i][j] /= k; return *this; } matrix<K>& operator%=(const K& k) { assert(k != K(0)); for (int i = 0; k < m; ++i) for (int j = 0; j < n; ++j) (*this)[i][j] = ((*this)[i][j] + k) % k; return *this; } matrix<K> operator+(const matrix<K>& other) const { return matrix<K>(*this) += other; } matrix<K> operator-(const matrix<K>& other) const { return matrix<K>(*this) -= other; } matrix<K> operator*(const matrix<K>& other) const { return matrix<K>(*this) *= other; } matrix<K> operator/(const K& k) const { return matrix(*this) /= k; } matrix<K> operator%(const K& k) const { return matrix(*this) %= k; } bool operator==(const matrix<K>& other) const { if (m != other.m or n != other.n) return false; for (int i = 0; i < m; ++i) for (int j = 0; j < n; ++j) if ((*this)[i][j] != other[i][j]) return false; return true; } bool operator!=(const matrix<K>& other) const { return !((*this) == other); } static matrix<K> E(int m) { assert(0 <= m); matrix<K> E_(m, m); for (int i = 0; i < m; ++i) E_[i][i] = K(1); return E_; } static matrix<K> e(int m, int i) { assert(0 <= i); assert(i < m); matrix<K> e_; e_[i][0] = K(1); return e_; } }; // Kの単位元がK(1)で取得できる場合こっちを使用する template <class K> matrix<K> rep_pow(matrix<K> x, int n /* = xのサイズ */, int64_t y) { matrix<K> res(matrix<K>::E(n)); while (y > 0) { if (y & 1) res *= x; x *= x; y >>= 1; } return res; } void solve() { constexpr i64 mod = 1'000'000'007; i64 M,K; cin >> M >> K; matrix<fp<mod>> A(M,M); rep(i,0,M){ rep(j,0,M){ A[i*j%M][i]+=1; A[(i+j)%M][i]+=1; } } auto Ak=rep_pow(A,M,K); matrix<fp<mod>> v(M,1); v[0][0]=1; auto w=Ak*v; cout << w[0][0] << endl; } int main() { std::cin.tie(0); std::ios::sync_with_stdio(false); cout.setf(ios::fixed); cout.precision(16); solve(); return 0; }