結果

問題 No.1050 Zero (Maximum)
ユーザー Ricky_ponRicky_pon
提出日時 2020-05-08 22:23:13
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 20 ms / 2,000 ms
コード長 3,771 bytes
コンパイル時間 2,607 ms
コンパイル使用メモリ 202,784 KB
最終ジャッジ日時 2025-01-10 08:56:26
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:156:16: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<1000000007>::i64’ {aka ‘long int’} [-Wformat=]
  156 |     printf("%lld\n", a[0][0].a);
      |             ~~~^
      |                |
      |                long long int
      |             %ld
main.cpp:149:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  149 |     scanf("%d%d", &m, &K);
      |     ~~~~~^~~~~~~~~~~~~~~~

ソースコード

diff #

#include <bits/stdc++.h>
#define For(i, a, b) for(int (i)=(int)(a); (i)<(int)(b); ++(i))
#define rFor(i, a, b) for(int (i)=(int)(a)-1; (i)>=(int)(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
#define double long double
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<lint, lint> pll;
template<class T> bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;}
template<class T> bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;}
template<class T> T div_floor(T a, T b){
    if(b < 0) a *= -1, b *= -1;
    return a>=0 ? a/b : (a+1)/b-1;
}
template<class T> T div_ceil(T a, T b){
    if(b < 0) a *= -1, b *= -1;
    return a>0 ? (a-1)/b+1 : a/b;
}

constexpr lint mod = 1e9+7;
constexpr lint INF = mod * mod;
constexpr int MAX = 200010;

template<int_fast64_t MOD> struct modint{
    using i64=int_fast64_t;
    i64 a;
    modint(const i64 a_=0): a(a_){
        if(a>MOD) a%=MOD;
        else if(a<0) (a%=MOD)+=MOD;
    }
    modint inv(){
        i64 t=1, n=MOD-2, x=a;
        while(n){
            if(n&1) (t*=x)%=MOD;
            (x*=x)%=MOD;
            n>>=1;
        }
        modint ret(t);
        return ret;
    }
    bool operator==(const modint x) const{return a==x.a;}
    bool operator!=(const modint x) const{return a!=x.a;}
    modint operator+(const modint x) const{
        return modint(*this)+=x;
    }
    modint operator-(const modint x) const{
        return modint(*this)-=x;
    }
    modint operator*(const modint x) const{
        return modint(*this)*=x;
    }
    modint operator/(const modint x) const{
        return modint(*this)/=x;
    }
    modint operator^(const lint x) const{
        return modint(*this)^=x;
    }
    modint &operator+=(const modint &x){
        a+=x.a;
        if(a>=MOD) a-=MOD;
        return *this;
    }
    modint &operator-=(const modint &x){
        a-=x.a;
        if(a<0) a+=MOD;
        return *this;
    }
    modint &operator*=(const modint &x){
        (a*=x.a)%=MOD;
        return *this;
    }
    modint &operator/=(modint x){
        (a*=x.inv().a)%=MOD;
        return *this;
    }
    modint &operator^=(lint n){
        i64 ret=1;
        while(n){
            if(n&1) (ret*=a)%=MOD;
            (a*=a)%=MOD;
            n>>=1;
        }
        a=ret;
        return *this;
    }
    modint operator-() const{
        return modint(0)-*this;
    }
    modint &operator++(){
        return *this+=1;
    }
    modint &operator--(){
        return *this-=1;
    }
    bool operator<(const modint x) const{
        return a<x.a;
    }
};

using mint=modint<1000000007>;

vector<mint> fact;
vector<mint> revfact;

void setfact(int n){
    fact.resize(n+1); revfact.resize(n+1);
    fact[0] = 1;
    rep(i, n) fact[i+1] = fact[i] * mint(i+1);

    revfact[n] = fact[n].inv();
    for(int i=n-1; i>=0; i--) revfact[i] = revfact[i+1] * mint(i+1);
}

mint getC(int n, int r){
    if(n<r) return 0;
    return fact[n] * revfact[r] * revfact[n-r];
}

using mat = vector<vector<mint>>;

mat mul(mat a, mat b){
    int n = a.size();
    mat c(n, vector<mint>(n));
    rep(i, n)rep(j, n){
        c[i][j] = 0;
        rep(k, n) c[i][j] += a[i][k] * b[k][j];
    }
    return c;
}

mat pow(mat a, int n){
    int m = a.size();
    mat b(m, vector<mint>(m));
    rep(i, m)rep(j, m) b[i][j] = (i == j);
    while(n){
        if(n & 1) b = mul(a, b), --n;
        else a = mul(a, a), n >>= 1;
    }
    return b;
}

int main(){
    int m, K;
    scanf("%d%d", &m, &K);
    mat a(m, vector<mint>(m));
    rep(i, m)rep(j, m){
        ++a[(i+j)%m][i];
        ++a[(i*j)%m][i];
    }
    a = pow(a, K);
    printf("%lld\n", a[0][0].a);
}
0