結果
問題 | No.214 素数サイコロと合成数サイコロ (3-Medium) |
ユーザー | maspy |
提出日時 | 2020-05-09 01:51:16 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 624 ms / 3,000 ms |
コード長 | 2,040 bytes |
コンパイル時間 | 89 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 43,840 KB |
最終ジャッジ日時 | 2024-07-04 03:45:43 |
合計ジャッジ時間 | 3,316 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 616 ms
43,840 KB |
testcase_01 | AC | 612 ms
43,700 KB |
testcase_02 | AC | 624 ms
43,700 KB |
ソースコード
import sys import numpy as np read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines MOD = 10**9 + 7 def fft_convolve(f, g, MOD=MOD): """ 数列 (多項式) f, g の畳み込みの計算.上下 15 bitずつ分けて計算することで, 30 bit以下の整数,長さ 250000 程度の数列での計算が正確に行える. """ fft = np.fft.rfft ifft = np.fft.irfft Lf = len(f) Lg = len(g) L = Lf + Lg - 1 fft_len = 1 << L.bit_length() fl = f & (1 << 15) - 1 fh = f >> 15 gl = g & (1 << 15) - 1 gh = g >> 15 def conv(f, g): return ifft(fft(f, fft_len) * fft(g, fft_len))[:L] x = conv(fl, gl) % MOD y = conv(fl + fh, gl + gh) % MOD z = conv(fh, gh) % MOD a, b, c = map(lambda x: (x + .5).astype(np.int64), [x, y, z]) return (a + ((b - a - c) << 15) + (c << 30)) % MOD def coef_of_generating_function(P, Q, N): """compute the coefficient [x^N] P/Q of rational power series. Parameters ---------- P : np.ndarray numerator. Q : np.ndarray denominator Q[0] == 1 and len(Q) == len(P) + 1 is assumed. N : int The coefficient to compute. """ def convolve(f, g): return fft_convolve(f, g, MOD) while N: Q1 = Q.copy() Q1[1::2] = np.negative(Q1[1::2]) if N & 1: P = convolve(P, Q1)[1::2] else: P = convolve(P, Q1)[::2] Q = convolve(Q, Q1)[::2] N >>= 1 return P[0] N, P, C = map(int, read().split()) def dice(nums, n_dice): U = nums[-1] * n_dice dp = np.zeros((n_dice + 1, U + 1), np.int64) dp[0, 0] = 1 for x in nums: for i in range(1, n_dice + 1): dp[i, x:] += dp[i - 1, :-x] return dp[-1] f1 = dice((2, 3, 5, 7, 11, 13), P) f2 = dice((4, 6, 8, 9, 10, 12), C) f = np.convolve(f1, f2) % MOD den = -f den[0] += 1 g = f[::-1].cumsum()[::-1] % MOD g[0] = 0 print(coef_of_generating_function(g, den, N))