結果
問題 | No.960 マンハッタン距離3 |
ユーザー | maspy |
提出日時 | 2020-05-10 06:01:58 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,260 bytes |
コンパイル時間 | 127 ms |
コンパイル使用メモリ | 82,352 KB |
実行使用メモリ | 103,040 KB |
最終ジャッジ日時 | 2024-07-06 23:19:02 |
合計ジャッジ時間 | 23,184 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 35 ms
55,552 KB |
testcase_01 | AC | 35 ms
55,808 KB |
testcase_02 | AC | 37 ms
55,484 KB |
testcase_03 | AC | 37 ms
55,936 KB |
testcase_04 | AC | 37 ms
55,424 KB |
testcase_05 | AC | 37 ms
56,064 KB |
testcase_06 | AC | 36 ms
55,620 KB |
testcase_07 | AC | 36 ms
55,552 KB |
testcase_08 | AC | 36 ms
55,680 KB |
testcase_09 | AC | 37 ms
55,680 KB |
testcase_10 | AC | 36 ms
56,064 KB |
testcase_11 | AC | 36 ms
55,296 KB |
testcase_12 | AC | 36 ms
55,808 KB |
testcase_13 | AC | 36 ms
55,424 KB |
testcase_14 | AC | 36 ms
55,680 KB |
testcase_15 | AC | 37 ms
55,936 KB |
testcase_16 | AC | 35 ms
55,680 KB |
testcase_17 | AC | 36 ms
55,680 KB |
testcase_18 | AC | 36 ms
55,424 KB |
testcase_19 | AC | 35 ms
55,296 KB |
testcase_20 | AC | 45 ms
68,224 KB |
testcase_21 | AC | 45 ms
66,688 KB |
testcase_22 | AC | 37 ms
55,808 KB |
testcase_23 | AC | 36 ms
56,064 KB |
testcase_24 | AC | 36 ms
55,936 KB |
testcase_25 | AC | 37 ms
56,832 KB |
testcase_26 | AC | 37 ms
55,936 KB |
testcase_27 | AC | 40 ms
62,208 KB |
testcase_28 | AC | 39 ms
61,312 KB |
testcase_29 | AC | 38 ms
56,064 KB |
testcase_30 | AC | 42 ms
62,848 KB |
testcase_31 | AC | 42 ms
63,872 KB |
testcase_32 | AC | 36 ms
56,320 KB |
testcase_33 | AC | 43 ms
65,024 KB |
testcase_34 | AC | 41 ms
63,744 KB |
testcase_35 | AC | 37 ms
55,680 KB |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | AC | 38 ms
61,952 KB |
testcase_39 | AC | 40 ms
61,952 KB |
testcase_40 | AC | 37 ms
56,320 KB |
testcase_41 | AC | 36 ms
55,936 KB |
testcase_42 | AC | 35 ms
56,576 KB |
testcase_43 | AC | 35 ms
56,576 KB |
testcase_44 | AC | 36 ms
55,936 KB |
testcase_45 | AC | 37 ms
55,936 KB |
testcase_46 | WA | - |
testcase_47 | AC | 37 ms
56,448 KB |
testcase_48 | AC | 41 ms
63,040 KB |
testcase_49 | AC | 46 ms
64,768 KB |
testcase_50 | WA | - |
testcase_51 | AC | 38 ms
56,320 KB |
testcase_52 | AC | 37 ms
56,192 KB |
testcase_53 | AC | 42 ms
64,128 KB |
testcase_54 | AC | 36 ms
55,808 KB |
testcase_55 | AC | 37 ms
55,808 KB |
testcase_56 | AC | 37 ms
56,192 KB |
testcase_57 | AC | 37 ms
56,064 KB |
testcase_58 | AC | 37 ms
56,320 KB |
testcase_59 | AC | 38 ms
56,448 KB |
testcase_60 | AC | 44 ms
64,000 KB |
testcase_61 | WA | - |
testcase_62 | WA | - |
testcase_63 | WA | - |
testcase_64 | AC | 36 ms
56,064 KB |
testcase_65 | AC | 37 ms
55,936 KB |
testcase_66 | AC | 37 ms
55,424 KB |
testcase_67 | AC | 38 ms
55,808 KB |
testcase_68 | AC | 37 ms
56,192 KB |
testcase_69 | AC | 36 ms
56,832 KB |
testcase_70 | AC | 36 ms
56,576 KB |
testcase_71 | AC | 37 ms
56,064 KB |
testcase_72 | AC | 43 ms
64,256 KB |
testcase_73 | AC | 41 ms
63,104 KB |
testcase_74 | AC | 37 ms
56,832 KB |
testcase_75 | AC | 37 ms
56,832 KB |
testcase_76 | AC | 37 ms
56,320 KB |
testcase_77 | AC | 37 ms
56,232 KB |
testcase_78 | AC | 38 ms
56,320 KB |
testcase_79 | AC | 39 ms
56,448 KB |
testcase_80 | AC | 38 ms
55,680 KB |
testcase_81 | WA | - |
testcase_82 | AC | 35 ms
55,680 KB |
testcase_83 | AC | 35 ms
55,936 KB |
testcase_84 | AC | 35 ms
55,680 KB |
testcase_85 | AC | 36 ms
55,296 KB |
testcase_86 | AC | 35 ms
55,808 KB |
testcase_87 | AC | 37 ms
56,192 KB |
testcase_88 | AC | 37 ms
55,808 KB |
testcase_89 | AC | 40 ms
61,824 KB |
testcase_90 | AC | 37 ms
56,704 KB |
testcase_91 | AC | 38 ms
55,936 KB |
testcase_92 | AC | 36 ms
55,808 KB |
testcase_93 | AC | 37 ms
55,680 KB |
testcase_94 | AC | 39 ms
61,440 KB |
testcase_95 | AC | 41 ms
62,208 KB |
testcase_96 | AC | 39 ms
62,592 KB |
testcase_97 | AC | 40 ms
63,488 KB |
testcase_98 | AC | 37 ms
56,372 KB |
testcase_99 | AC | 45 ms
56,320 KB |
testcase_100 | WA | - |
testcase_101 | WA | - |
testcase_102 | AC | 40 ms
62,592 KB |
testcase_103 | AC | 36 ms
55,808 KB |
testcase_104 | AC | 38 ms
55,680 KB |
testcase_105 | AC | 36 ms
56,248 KB |
testcase_106 | AC | 36 ms
56,064 KB |
testcase_107 | AC | 37 ms
56,192 KB |
testcase_108 | AC | 36 ms
56,320 KB |
testcase_109 | AC | 40 ms
62,976 KB |
testcase_110 | AC | 37 ms
55,936 KB |
testcase_111 | AC | 36 ms
56,192 KB |
testcase_112 | AC | 36 ms
55,552 KB |
testcase_113 | AC | 36 ms
55,680 KB |
testcase_114 | AC | 35 ms
55,680 KB |
testcase_115 | AC | 35 ms
55,296 KB |
testcase_116 | AC | 35 ms
55,680 KB |
testcase_117 | AC | 36 ms
56,320 KB |
testcase_118 | AC | 37 ms
55,680 KB |
testcase_119 | AC | 37 ms
56,192 KB |
testcase_120 | AC | 36 ms
55,808 KB |
testcase_121 | AC | 37 ms
55,168 KB |
testcase_122 | AC | 35 ms
55,936 KB |
testcase_123 | AC | 36 ms
56,064 KB |
testcase_124 | AC | 36 ms
55,680 KB |
testcase_125 | AC | 35 ms
55,552 KB |
testcase_126 | AC | 36 ms
55,680 KB |
testcase_127 | AC | 37 ms
55,936 KB |
testcase_128 | AC | 150 ms
82,432 KB |
testcase_129 | AC | 190 ms
94,848 KB |
testcase_130 | AC | 167 ms
87,552 KB |
testcase_131 | AC | 200 ms
98,432 KB |
testcase_132 | AC | 209 ms
97,920 KB |
testcase_133 | AC | 98 ms
77,312 KB |
testcase_134 | AC | 74 ms
81,968 KB |
testcase_135 | AC | 138 ms
82,304 KB |
testcase_136 | AC | 148 ms
82,688 KB |
testcase_137 | AC | 89 ms
89,216 KB |
testcase_138 | AC | 187 ms
91,588 KB |
testcase_139 | AC | 193 ms
93,728 KB |
testcase_140 | AC | 112 ms
102,540 KB |
testcase_141 | AC | 207 ms
99,436 KB |
testcase_142 | AC | 145 ms
85,696 KB |
testcase_143 | AC | 97 ms
92,160 KB |
testcase_144 | WA | - |
testcase_145 | WA | - |
testcase_146 | AC | 129 ms
80,728 KB |
testcase_147 | AC | 322 ms
91,560 KB |
testcase_148 | AC | 119 ms
84,480 KB |
testcase_149 | AC | 107 ms
89,984 KB |
testcase_150 | AC | 119 ms
97,116 KB |
testcase_151 | AC | 73 ms
76,672 KB |
testcase_152 | AC | 102 ms
93,952 KB |
testcase_153 | AC | 116 ms
103,040 KB |
testcase_154 | WA | - |
testcase_155 | AC | 240 ms
94,592 KB |
testcase_156 | AC | 202 ms
80,640 KB |
testcase_157 | AC | 229 ms
94,592 KB |
testcase_158 | AC | 205 ms
101,504 KB |
testcase_159 | AC | 157 ms
80,612 KB |
testcase_160 | AC | 132 ms
78,972 KB |
testcase_161 | AC | 253 ms
97,152 KB |
testcase_162 | AC | 107 ms
100,096 KB |
testcase_163 | AC | 108 ms
89,288 KB |
testcase_164 | AC | 129 ms
101,632 KB |
testcase_165 | AC | 141 ms
94,836 KB |
testcase_166 | AC | 88 ms
79,632 KB |
testcase_167 | AC | 109 ms
88,352 KB |
testcase_168 | WA | - |
testcase_169 | WA | - |
testcase_170 | WA | - |
testcase_171 | WA | - |
testcase_172 | AC | 93 ms
85,632 KB |
testcase_173 | AC | 81 ms
77,384 KB |
testcase_174 | AC | 148 ms
97,320 KB |
testcase_175 | AC | 153 ms
102,784 KB |
testcase_176 | AC | 124 ms
94,464 KB |
testcase_177 | AC | 86 ms
78,016 KB |
testcase_178 | AC | 137 ms
95,032 KB |
testcase_179 | AC | 143 ms
96,384 KB |
testcase_180 | AC | 161 ms
99,840 KB |
testcase_181 | AC | 111 ms
80,696 KB |
testcase_182 | AC | 109 ms
86,272 KB |
testcase_183 | AC | 112 ms
90,112 KB |
testcase_184 | AC | 111 ms
86,784 KB |
testcase_185 | AC | 129 ms
92,932 KB |
testcase_186 | AC | 134 ms
97,024 KB |
testcase_187 | AC | 135 ms
92,416 KB |
testcase_188 | AC | 39 ms
55,680 KB |
testcase_189 | AC | 37 ms
55,680 KB |
testcase_190 | AC | 37 ms
55,296 KB |
testcase_191 | AC | 37 ms
55,808 KB |
testcase_192 | AC | 35 ms
56,064 KB |
testcase_193 | AC | 35 ms
55,808 KB |
testcase_194 | AC | 35 ms
55,296 KB |
testcase_195 | AC | 36 ms
55,936 KB |
testcase_196 | AC | 229 ms
91,260 KB |
testcase_197 | AC | 166 ms
80,572 KB |
testcase_198 | AC | 200 ms
87,168 KB |
testcase_199 | AC | 220 ms
93,440 KB |
testcase_200 | AC | 177 ms
96,512 KB |
testcase_201 | AC | 147 ms
87,424 KB |
testcase_202 | AC | 224 ms
95,192 KB |
testcase_203 | AC | 202 ms
85,568 KB |
testcase_204 | AC | 255 ms
99,440 KB |
testcase_205 | AC | 191 ms
86,816 KB |
testcase_206 | AC | 170 ms
98,816 KB |
testcase_207 | AC | 177 ms
93,184 KB |
testcase_208 | WA | - |
testcase_209 | WA | - |
testcase_210 | AC | 125 ms
78,080 KB |
testcase_211 | AC | 191 ms
83,712 KB |
testcase_212 | AC | 136 ms
81,664 KB |
testcase_213 | AC | 166 ms
86,784 KB |
testcase_214 | AC | 255 ms
101,248 KB |
testcase_215 | AC | 229 ms
95,744 KB |
testcase_216 | AC | 248 ms
99,912 KB |
testcase_217 | AC | 207 ms
87,612 KB |
testcase_218 | AC | 177 ms
101,120 KB |
testcase_219 | AC | 154 ms
87,808 KB |
ソースコード
import sys from collections import namedtuple read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines INF = 10**10 Segment = namedtuple('Segment', ('x', 'y', 'dx', 'dy', 'n')) Rectangle = namedtuple('Rectangle', ('x1', 'y1', 'x2', 'y2')) Pt = namedtuple('Pt', ('x', 'y')) W, H = map(int, readline().split()) N = int(readline()) m = map(int, read().split()) XY = zip(m, m) x0, y0 = next(XY) def solve_two(x0, y0, x, y): if x0 > x: x0, x = x, x0 y0, y = y, y0 dx = x - x0 dy = y - y0 if (dx + dy) % 2 != 0: return if dx == abs(dy): if dy > 0: yield Rectangle(-INF, y, x0, INF) yield Rectangle(x, -INF, INF, y0) if dx > 1: yield Segment(x0 + 1, y - 1, 1, -1, dx - 2) else: yield Rectangle(-INF, -INF, x0, y) yield Rectangle(x, y0, INF, INF) if dx > 1: yield Segment(x0 + 1, y + 1, 1, 1, dx - 2) return d = (dx + abs(dy)) // 2 if dx == 0: y = (y + y0) // 2 yield Segment(-INF, y, 1, 0, INF * 2) elif dy == 0: x = (x + x0) // 2 yield Segment(x, -INF, 0, 1, INF * 2) elif dx < dy: yield Segment(x0,y0+d,-1,0,INF) yield Segment(x, y-d, 1, 0, INF) if dx > 1: yield Segment(x0+1,y0-1,1,-1,dx-2) elif 0 < dy < dx: yield Segment(x-d,y,0,1,INF) if dy > 1: yield Segment(x - d + 1, y - 1, 1, -1, dy - 2) yield Segment(x0 + d, y0, 0, -1, INF) elif 0 < dx < -dy: yield Segment(x0, y0-d, -1, 0, INF) if dx > 1: yield Segment(x0+1,y0-d+1,1,1,dx - 2) yield Segment(x, y + d, 1, 0, INF) elif 0 < -dy < dx: yield Segment(x0+d,y0, 0, 1, INF) if -dy > 1: yield Segment(x-d+1,y+1, 1, 1, -dy - 2) yield Segment(x-d,y,0,-1,INF) else: raise Exception def modify(seg): x,y,dx,dy,n = seg if dx == -1: return Segment(x+dx*n,y+dy*n,-dx,-dy,n) if dx == 0 and dy == -1: return Segment(x,y-n,0,1,n) return seg def ptpt(pt1, pt2): if pt1.x == pt2.x and pt1.y == pt2.y: return pt1 else: return None def segpt(seg, pt): seg = modify(seg) d = abs(seg.x - pt.x) + abs(seg.y - pt.y) k = d // (abs(seg.dx) + abs(seg.dy)) if not (0 <= k <= seg.n): return None if seg.x + seg.dx * k == pt.x and seg.y + seg.dy * k == pt.y: return pt return None def recpt(rec, pt): if (rec.x1 <= pt.x <= rec.x2) and (rec.y1 <= pt.y <= rec.y2): return pt return None def recrec(rec1, rec2): x1 = max(rec1.x1, rec2.x1) x2 = min(rec1.x2, rec2.x2) y1 = max(rec1.y1, rec2.y1) y2 = min(rec1.y2, rec2.y2) if x1 <= x2 and y1 <= y2: return Rectangle(x1, y1, x2, y2) return None def recseg(rec, seg): seg = modify(seg) if seg.dx == 0: if not (rec.x1 <= seg.x <= rec.x2): return None low_x, high_x = 0, INF * 2 elif seg.dx == 1: low_x, high_x = rec.x1 - seg.x, rec.x2 - seg.x else: low_x, high_x = seg.x - rec.x2, seg.x - rec.x1 if seg.dy == 0: if not (rec.y1 <= seg.y <= rec.y2): return None low_y, high_y = 0, INF * 2 elif seg.dy == 1: low_y, high_y = rec.y1 - seg.y, rec.y2 - seg.y else: low_y, high_y = seg.y - rec.y2, seg.y - rec.y1 low = max(low_x, low_y, 0) high = min(high_x, high_y, seg.n) if low > high: return None return Segment(seg.x + seg.dx * low, seg.y + seg.dy * low, seg.dx, seg.dy, high - low) def segseg(seg1, seg2): seg1 = modify(seg1) seg2 = modify(seg2) x1, y1, a1, b1 = seg1.x, seg1.y, seg1.dx, seg1.dy x2, y2, a2, b2 = seg2.x, seg2.y, seg2.dx, seg2.dy det = -a1 * b2 + a2 * b1 if det != 0: x, y = x2 - x1, y2 - y1 s = (-b2 * x + a2 * y) // det t = (-b1 * x + a1 * y) // det if not ((0 <= s <= seg1.n) and (0 <= t <= seg2.n)): return None x, y = x1 + a1 * s, y1 + b1 * s if (x != x2 + a2 * t) or (y != y2 + b2 * t): return None return Pt(x, y) x1, y1, a1, b1 = seg1.x, seg1.y, seg1.dx, seg1.dy x2, y2, a2, b2 = seg2.x, seg2.y, seg2.dx, seg2.dy assert a1 == a2 and b1 == b2 a, b = a1, b1 if b * x1 - a * y1 != b * x2 - a * y2: # 交わらない平行線 return None # 直線として同じ if a == 1: low_x = max(x1, x2) high_x = min(x1 + seg1.n, x2 + seg2.n) if low_x > high_x: return None return Segment(low_x, y1 + b * (low_x - x1), a, b, high_x - low_x) assert a == 0 and b == 1 low_y = max(y1, y2) high_y = min(y1 + seg1.n, y2 + seg2.n) if low_y > high_y: return None return Segment(x1, low_y, 0, 1, high_y - low_y) def intersect_two(shape1, shape2): if isinstance(shape1, Rectangle): if isinstance(shape2, Rectangle): return recrec(shape1, shape2) if isinstance(shape2, Segment): return recseg(shape1, shape2) return recpt(shape1, shape2) if isinstance(shape1, Segment): if isinstance(shape2, Rectangle): return recseg(shape2, shape1) if isinstance(shape2, Segment): return segseg(shape1, shape2) return segpt(shape1, shape2) if isinstance(shape2, Rectangle): return recpt(shape2, shape1) if isinstance(shape2, Segment): return segpt(shape2, shape1) return ptpt(shape1, shape2) def intersect(pts1, pts2): for shape1 in pts1: for shape2 in pts2: shape = intersect_two(shape1, shape2) if shape is None: continue yield shape def count_pt(shape): if isinstance(shape, Rectangle): return (shape.x2 - shape.x1 + 1) * (shape.y2 - shape.y1 + 1) if isinstance(shape, Segment): return shape.n + 1 return 1 pts = [Rectangle(1, 1, W, H)] for x, y in zip(m, m): pts1 = list(solve_two(x0, y0, x, y)) pts = list(intersect(pts, pts1)) answer = 0 for shape in pts: answer += count_pt(shape) print(answer)