結果

問題 No.960 マンハッタン距離3
ユーザー maspymaspy
提出日時 2020-05-10 06:13:31
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 1,323 ms / 2,000 ms
コード長 6,278 bytes
コンパイル時間 228 ms
コンパイル使用メモリ 13,568 KB
実行使用メモリ 35,620 KB
最終ジャッジ日時 2024-07-06 23:37:22
合計ジャッジ時間 45,687 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 27 ms
11,520 KB
testcase_01 AC 27 ms
11,520 KB
testcase_02 AC 27 ms
11,392 KB
testcase_03 AC 26 ms
11,392 KB
testcase_04 AC 27 ms
11,520 KB
testcase_05 AC 27 ms
11,392 KB
testcase_06 AC 27 ms
11,520 KB
testcase_07 AC 31 ms
11,520 KB
testcase_08 AC 29 ms
11,392 KB
testcase_09 AC 29 ms
11,520 KB
testcase_10 AC 29 ms
11,392 KB
testcase_11 AC 27 ms
11,392 KB
testcase_12 AC 27 ms
11,392 KB
testcase_13 AC 26 ms
11,392 KB
testcase_14 AC 29 ms
11,392 KB
testcase_15 AC 27 ms
11,392 KB
testcase_16 AC 26 ms
11,392 KB
testcase_17 AC 27 ms
11,520 KB
testcase_18 AC 29 ms
11,520 KB
testcase_19 AC 26 ms
11,520 KB
testcase_20 AC 29 ms
11,392 KB
testcase_21 AC 29 ms
11,392 KB
testcase_22 AC 26 ms
11,392 KB
testcase_23 AC 26 ms
11,392 KB
testcase_24 AC 27 ms
11,520 KB
testcase_25 AC 27 ms
11,520 KB
testcase_26 AC 28 ms
11,520 KB
testcase_27 AC 27 ms
11,520 KB
testcase_28 AC 27 ms
11,520 KB
testcase_29 AC 28 ms
11,392 KB
testcase_30 AC 28 ms
11,392 KB
testcase_31 AC 27 ms
11,520 KB
testcase_32 AC 26 ms
11,520 KB
testcase_33 AC 27 ms
11,520 KB
testcase_34 AC 28 ms
11,520 KB
testcase_35 AC 26 ms
11,520 KB
testcase_36 AC 28 ms
11,520 KB
testcase_37 AC 27 ms
11,520 KB
testcase_38 AC 29 ms
11,520 KB
testcase_39 AC 27 ms
11,520 KB
testcase_40 AC 28 ms
11,520 KB
testcase_41 AC 27 ms
11,520 KB
testcase_42 AC 27 ms
11,520 KB
testcase_43 AC 27 ms
11,520 KB
testcase_44 AC 27 ms
11,520 KB
testcase_45 AC 27 ms
11,520 KB
testcase_46 AC 27 ms
11,520 KB
testcase_47 AC 27 ms
11,520 KB
testcase_48 AC 27 ms
11,520 KB
testcase_49 AC 28 ms
11,264 KB
testcase_50 AC 26 ms
11,520 KB
testcase_51 AC 27 ms
11,520 KB
testcase_52 AC 27 ms
11,392 KB
testcase_53 AC 27 ms
11,520 KB
testcase_54 AC 27 ms
11,392 KB
testcase_55 AC 27 ms
11,520 KB
testcase_56 AC 26 ms
11,520 KB
testcase_57 AC 27 ms
11,520 KB
testcase_58 AC 26 ms
11,520 KB
testcase_59 AC 27 ms
11,392 KB
testcase_60 AC 27 ms
11,520 KB
testcase_61 AC 28 ms
11,520 KB
testcase_62 AC 27 ms
11,520 KB
testcase_63 AC 28 ms
11,392 KB
testcase_64 AC 27 ms
11,520 KB
testcase_65 AC 28 ms
11,520 KB
testcase_66 AC 26 ms
11,392 KB
testcase_67 AC 26 ms
11,520 KB
testcase_68 AC 27 ms
11,520 KB
testcase_69 AC 27 ms
11,392 KB
testcase_70 AC 28 ms
11,392 KB
testcase_71 AC 27 ms
11,520 KB
testcase_72 AC 28 ms
11,520 KB
testcase_73 AC 27 ms
11,392 KB
testcase_74 AC 27 ms
11,520 KB
testcase_75 AC 27 ms
11,392 KB
testcase_76 AC 27 ms
11,520 KB
testcase_77 AC 26 ms
11,392 KB
testcase_78 AC 28 ms
11,520 KB
testcase_79 AC 28 ms
11,392 KB
testcase_80 AC 27 ms
11,520 KB
testcase_81 AC 27 ms
11,392 KB
testcase_82 AC 27 ms
11,392 KB
testcase_83 AC 27 ms
11,520 KB
testcase_84 AC 26 ms
11,520 KB
testcase_85 AC 26 ms
11,520 KB
testcase_86 AC 26 ms
11,520 KB
testcase_87 AC 27 ms
11,392 KB
testcase_88 AC 27 ms
11,392 KB
testcase_89 AC 27 ms
11,392 KB
testcase_90 AC 26 ms
11,520 KB
testcase_91 AC 27 ms
11,520 KB
testcase_92 AC 26 ms
11,520 KB
testcase_93 AC 27 ms
11,520 KB
testcase_94 AC 27 ms
11,520 KB
testcase_95 AC 28 ms
11,392 KB
testcase_96 AC 26 ms
11,520 KB
testcase_97 AC 28 ms
11,392 KB
testcase_98 AC 30 ms
11,520 KB
testcase_99 AC 29 ms
11,520 KB
testcase_100 AC 29 ms
11,392 KB
testcase_101 AC 27 ms
11,392 KB
testcase_102 AC 28 ms
11,520 KB
testcase_103 AC 27 ms
11,392 KB
testcase_104 AC 28 ms
11,392 KB
testcase_105 AC 27 ms
11,392 KB
testcase_106 AC 28 ms
11,520 KB
testcase_107 AC 27 ms
11,392 KB
testcase_108 AC 27 ms
11,520 KB
testcase_109 AC 27 ms
11,520 KB
testcase_110 AC 27 ms
11,520 KB
testcase_111 AC 27 ms
11,520 KB
testcase_112 AC 26 ms
11,520 KB
testcase_113 AC 26 ms
11,520 KB
testcase_114 AC 28 ms
11,520 KB
testcase_115 AC 26 ms
11,520 KB
testcase_116 AC 28 ms
11,392 KB
testcase_117 AC 27 ms
11,520 KB
testcase_118 AC 27 ms
11,520 KB
testcase_119 AC 28 ms
11,392 KB
testcase_120 AC 27 ms
11,520 KB
testcase_121 AC 27 ms
11,520 KB
testcase_122 AC 27 ms
11,392 KB
testcase_123 AC 27 ms
11,392 KB
testcase_124 AC 26 ms
11,392 KB
testcase_125 AC 34 ms
11,520 KB
testcase_126 AC 34 ms
11,520 KB
testcase_127 AC 26 ms
11,392 KB
testcase_128 AC 375 ms
18,236 KB
testcase_129 AC 1,041 ms
29,100 KB
testcase_130 AC 698 ms
23,584 KB
testcase_131 AC 1,178 ms
32,992 KB
testcase_132 AC 895 ms
32,544 KB
testcase_133 AC 39 ms
11,520 KB
testcase_134 AC 97 ms
18,172 KB
testcase_135 AC 271 ms
19,048 KB
testcase_136 AC 302 ms
18,348 KB
testcase_137 AC 169 ms
22,932 KB
testcase_138 AC 651 ms
26,308 KB
testcase_139 AC 770 ms
28,560 KB
testcase_140 AC 276 ms
35,380 KB
testcase_141 AC 922 ms
33,708 KB
testcase_142 AC 391 ms
20,680 KB
testcase_143 AC 199 ms
25,892 KB
testcase_144 AC 1,094 ms
31,080 KB
testcase_145 AC 90 ms
12,544 KB
testcase_146 AC 213 ms
16,120 KB
testcase_147 AC 811 ms
26,684 KB
testcase_148 AC 165 ms
19,624 KB
testcase_149 AC 245 ms
24,656 KB
testcase_150 AC 340 ms
30,508 KB
testcase_151 AC 44 ms
12,416 KB
testcase_152 AC 272 ms
28,072 KB
testcase_153 AC 321 ms
35,488 KB
testcase_154 AC 48 ms
11,904 KB
testcase_155 AC 570 ms
28,296 KB
testcase_156 AC 205 ms
16,944 KB
testcase_157 AC 581 ms
28,692 KB
testcase_158 AC 600 ms
34,700 KB
testcase_159 AC 117 ms
14,836 KB
testcase_160 AC 55 ms
12,160 KB
testcase_161 AC 653 ms
31,208 KB
testcase_162 AC 254 ms
32,516 KB
testcase_163 AC 185 ms
23,072 KB
testcase_164 AC 401 ms
34,024 KB
testcase_165 AC 327 ms
28,908 KB
testcase_166 AC 77 ms
14,716 KB
testcase_167 AC 206 ms
22,508 KB
testcase_168 AC 260 ms
19,252 KB
testcase_169 AC 295 ms
20,044 KB
testcase_170 AC 232 ms
18,328 KB
testcase_171 AC 398 ms
22,908 KB
testcase_172 AC 174 ms
20,364 KB
testcase_173 AC 53 ms
12,928 KB
testcase_174 AC 346 ms
31,160 KB
testcase_175 AC 416 ms
35,620 KB
testcase_176 AC 300 ms
27,532 KB
testcase_177 AC 60 ms
13,556 KB
testcase_178 AC 307 ms
28,304 KB
testcase_179 AC 326 ms
29,504 KB
testcase_180 AC 306 ms
32,468 KB
testcase_181 AC 83 ms
16,096 KB
testcase_182 AC 146 ms
20,776 KB
testcase_183 AC 212 ms
25,208 KB
testcase_184 AC 168 ms
21,512 KB
testcase_185 AC 224 ms
27,088 KB
testcase_186 AC 275 ms
31,268 KB
testcase_187 AC 209 ms
26,084 KB
testcase_188 AC 28 ms
11,520 KB
testcase_189 AC 27 ms
11,520 KB
testcase_190 AC 27 ms
11,520 KB
testcase_191 AC 26 ms
11,392 KB
testcase_192 AC 27 ms
11,520 KB
testcase_193 AC 26 ms
11,392 KB
testcase_194 AC 27 ms
11,392 KB
testcase_195 AC 26 ms
11,520 KB
testcase_196 AC 832 ms
26,112 KB
testcase_197 AC 241 ms
15,460 KB
testcase_198 AC 636 ms
22,200 KB
testcase_199 AC 891 ms
27,196 KB
testcase_200 AC 538 ms
30,364 KB
testcase_201 AC 374 ms
21,832 KB
testcase_202 AC 1,014 ms
29,052 KB
testcase_203 AC 567 ms
20,804 KB
testcase_204 AC 1,275 ms
33,740 KB
testcase_205 AC 617 ms
21,948 KB
testcase_206 AC 413 ms
33,420 KB
testcase_207 AC 701 ms
27,552 KB
testcase_208 AC 943 ms
27,452 KB
testcase_209 AC 309 ms
16,192 KB
testcase_210 AC 151 ms
13,684 KB
testcase_211 AC 441 ms
19,448 KB
testcase_212 AC 135 ms
16,236 KB
testcase_213 AC 463 ms
22,408 KB
testcase_214 AC 1,323 ms
34,768 KB
testcase_215 AC 1,064 ms
30,300 KB
testcase_216 AC 1,260 ms
33,320 KB
testcase_217 AC 675 ms
23,212 KB
testcase_218 AC 556 ms
34,188 KB
testcase_219 AC 235 ms
22,920 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
from collections import namedtuple

read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines

INF = 10**10

Segment = namedtuple('Segment', ('x', 'y', 'dx', 'dy', 'n'))
Rectangle = namedtuple('Rectangle', ('x1', 'y1', 'x2', 'y2'))
Pt = namedtuple('Pt', ('x', 'y'))

W, H = map(int, readline().split())
N = int(readline())
m = map(int, read().split())
X,Y = zip(*zip(m,m))
x0, y0 = X[0], Y[0]

def solve_two(x0, y0, x, y):
    if x0 > x:
        x0, x = x, x0
        y0, y = y, y0
    dx = x - x0
    dy = y - y0
    if (dx + dy) % 2 != 0:
        return
    if dx == abs(dy):
        if dy > 0:
            yield Rectangle(-INF, y, x0, INF)
            yield Rectangle(x, -INF, INF, y0)
            if dx > 1:
                yield Segment(x0 + 1, y - 1, 1, -1, dx - 2)
        else:
            yield Rectangle(-INF, -INF, x0, y)
            yield Rectangle(x, y0, INF, INF)
            if dx > 1:
                yield Segment(x0 + 1, y + 1, 1, 1, dx - 2)
        return
    d = (dx + abs(dy)) // 2
    if dx == 0:
        y = (y + y0) // 2
        yield Segment(-INF, y, 1, 0, INF * 2)
    elif dy == 0:
        x = (x + x0) // 2
        yield Segment(x, -INF, 0, 1, INF * 2)
    elif dx < dy:
        yield Segment(x0,y0+d,-1,0,INF)
        yield Segment(x, y-d, 1, 0, INF)
        if dx > 1:
            yield Segment(x0+1,y0+d-1,1,-1,dx-2)
    elif 0 < dy < dx:
        yield Segment(x-d,y,0,1,INF)
        if dy > 1:
            yield Segment(x - d + 1, y - 1, 1, -1, dy - 2)
        yield Segment(x0 + d, y0, 0, -1, INF)
    elif 0 < dx < -dy:
        yield Segment(x0, y0-d, -1, 0, INF)
        if dx > 1:
            yield Segment(x0+1,y0-d+1,1,1,dx - 2)
        yield Segment(x, y + d, 1, 0, INF)
    elif 0 < -dy < dx:
        yield Segment(x0+d,y0, 0, 1, INF)
        if -dy > 1:
            yield Segment(x-d+1,y+1, 1, 1, -dy - 2)
        yield Segment(x-d,y,0,-1,INF)
    else:
        raise Exception

def modify(seg):
    x,y,dx,dy,n = seg
    if dx == -1:
        return Segment(x+dx*n,y+dy*n,-dx,-dy,n)
    if dx == 0 and dy == -1:
        return Segment(x,y-n,0,1,n)
    return seg

def ptpt(pt1, pt2):
    if pt1.x == pt2.x and pt1.y == pt2.y:
        return pt1
    else:
        return None

def segpt(seg, pt):
    seg = modify(seg)
    d = abs(seg.x - pt.x) + abs(seg.y - pt.y)
    k = d // (abs(seg.dx) + abs(seg.dy))
    if not (0 <= k <= seg.n):
        return None
    if seg.x + seg.dx * k == pt.x and seg.y + seg.dy * k == pt.y:
        return pt
    return None

def recpt(rec, pt):
    if (rec.x1 <= pt.x <= rec.x2) and (rec.y1 <= pt.y <= rec.y2):
        return pt
    return None

def recrec(rec1, rec2):
    x1 = max(rec1.x1, rec2.x1)
    x2 = min(rec1.x2, rec2.x2)
    y1 = max(rec1.y1, rec2.y1)
    y2 = min(rec1.y2, rec2.y2)
    if x1 <= x2 and y1 <= y2:
        return Rectangle(x1, y1, x2, y2)
    return None

def recseg(rec, seg):
    seg = modify(seg)
    if seg.dx == 0:
        if not (rec.x1 <= seg.x <= rec.x2):
            return None
        low_x, high_x = 0, INF * 2
    elif seg.dx == 1:
        low_x, high_x = rec.x1 - seg.x, rec.x2 - seg.x
    else:
        low_x, high_x = seg.x - rec.x2, seg.x - rec.x1
    if seg.dy == 0:
        if not (rec.y1 <= seg.y <= rec.y2):
            return None
        low_y, high_y = 0, INF * 2
    elif seg.dy == 1:
        low_y, high_y = rec.y1 - seg.y, rec.y2 - seg.y
    else:
        low_y, high_y = seg.y - rec.y2, seg.y - rec.y1
    low = max(low_x, low_y, 0)
    high = min(high_x, high_y, seg.n)
    if low > high:
        return None
    return Segment(seg.x + seg.dx * low, seg.y + seg.dy * low, seg.dx, seg.dy,
                   high - low)

def segseg(seg1, seg2):
    seg1 = modify(seg1)
    seg2 = modify(seg2)
    x1, y1, a1, b1 = seg1.x, seg1.y, seg1.dx, seg1.dy
    x2, y2, a2, b2 = seg2.x, seg2.y, seg2.dx, seg2.dy
    det = -a1 * b2 + a2 * b1
    if det != 0:
        x, y = x2 - x1, y2 - y1
        s = (-b2 * x + a2 * y) // det
        t = (-b1 * x + a1 * y) // det
        if not ((0 <= s <= seg1.n) and (0 <= t <= seg2.n)):
            return None
        x, y = x1 + a1 * s, y1 + b1 * s
        if (x != x2 + a2 * t) or (y != y2 + b2 * t):
            return None
        return Pt(x, y)
    x1, y1, a1, b1 = seg1.x, seg1.y, seg1.dx, seg1.dy
    x2, y2, a2, b2 = seg2.x, seg2.y, seg2.dx, seg2.dy
    assert a1 == a2 and b1 == b2
    a, b = a1, b1
    if b * x1 - a * y1 != b * x2 - a * y2:
        # 交わらない平行線
        return None
    # 直線として同じ
    if a == 1:
        low_x = max(x1, x2)
        high_x = min(x1 + seg1.n, x2 + seg2.n)
        if low_x > high_x:
            return None
        return Segment(low_x, y1 + b * (low_x - x1), a, b, high_x - low_x)
    assert a == 0 and b == 1
    low_y = max(y1, y2)
    high_y = min(y1 + seg1.n, y2 + seg2.n)
    if low_y > high_y:
        return None
    return Segment(x1, low_y, 0, 1, high_y - low_y)

def intersect_two(shape1, shape2):
    if isinstance(shape1, Rectangle):
        if isinstance(shape2, Rectangle):
            return recrec(shape1, shape2)
        if isinstance(shape2, Segment):
            return recseg(shape1, shape2)
        return recpt(shape1, shape2)
    if isinstance(shape1, Segment):
        if isinstance(shape2, Rectangle):
            return recseg(shape2, shape1)
        if isinstance(shape2, Segment):
            return segseg(shape1, shape2)
        return segpt(shape1, shape2)
    if isinstance(shape2, Rectangle):
        return recpt(shape2, shape1)
    if isinstance(shape2, Segment):
        return segpt(shape2, shape1)
    return ptpt(shape1, shape2)

def intersect(pts1, pts2):
    for shape1 in pts1:
        for shape2 in pts2:
            shape = intersect_two(shape1, shape2)
            if shape is None:
                continue
            yield shape

def count_pt(shape):
    if isinstance(shape, Rectangle):
        return (shape.x2 - shape.x1 + 1) * (shape.y2 - shape.y1 + 1)
    if isinstance(shape, Segment):
        return shape.n + 1
    return 1

pts = [Rectangle(1, 1, W, H)]
for x, y in zip(X[1:], Y[1:]):
    pts1 = list(solve_two(x0, y0, x, y))
    pts = list(intersect(pts, pts1))

answer = 0
for shape in pts:
    answer += count_pt(shape)

print(answer)
0