結果

問題 No.995 タピオカオイシクナーレ
ユーザー penguinshunyapenguinshunya
提出日時 2020-05-11 14:06:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 68 ms / 2,000 ms
コード長 4,404 bytes
コンパイル時間 2,657 ms
コンパイル使用メモリ 221,232 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-18 10:23:28
合計ジャッジ時間 5,074 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 67 ms
5,376 KB
testcase_17 AC 67 ms
5,376 KB
testcase_18 AC 67 ms
5,376 KB
testcase_19 AC 67 ms
5,376 KB
testcase_20 AC 67 ms
5,376 KB
testcase_21 AC 67 ms
5,376 KB
testcase_22 AC 68 ms
5,376 KB
testcase_23 AC 67 ms
5,376 KB
testcase_24 AC 66 ms
5,376 KB
testcase_25 AC 67 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#define rep(i, n) for (int i = 0; i < int(n); i++)
#define rrep(i, n) for (int i = int(n) - 1; i >= 0; i--)
#define reps(i, n) for (int i = 1; i <= int(n); i++)
#define rreps(i, n) for (int i = int(n); i >= 1; i--)
#define repc(i, n) for (int i = 0; i <= int(n); i++)
#define rrepc(i, n) for (int i = int(n); i >= 0; i--)
#define repi(i, a, b) for (int i = int(a); i < int(b); i++)
#define repic(i, a, b) for (int i = int(a); i <= int(b); i++)
#define all(a) (a).begin(), (a).end()
#define bit32(x) (1 << (x))
#define bit64(x) (1ll << (x))
#define sz(v) ((int) v.size())

using namespace std;

using i64 = long long;
using f80 = long double;
using vi32 = vector<int>;
using vi64 = vector<i64>;
using vf80 = vector<f80>;
using vstr = vector<string>;

inline void yes() { cout << "Yes" << endl; exit(0); }
inline void no() { cout << "No" << endl; exit(0); }
inline i64 gcd(i64 a, i64 b) { if (min(a, b) == 0) return max(a, b); if (a % b == 0) return b; return gcd(b, a % b); }
inline i64 lcm(i64 a, i64 b) { if (min(a, b) == 0) return max(a, b); return a / gcd(a, b) * b; }
template <typename T> class pqasc : public priority_queue<T, vector<T>, greater<T>> {};
template <typename T> class pqdesc : public priority_queue<T, vector<T>, less<T>> {};
template <typename T> inline void amax(T &x, T y) { x = max(x, y); }
template <typename T> inline void amin(T &x, T y) { x = min(x, y); }
template <typename T> inline T exp(T x, i64 n, T e = 1) { T r = e; while (n > 0) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; }
template <typename T> istream& operator>>(istream &is, vector<T> &v) { for (auto &x : v) is >> x; return is; }
template <typename T> ostream& operator<<(ostream &os, vector<T> &v) { rep(i, v.size()) { if (i) os << ' '; os << v[i]; } return os; }
void solve(); int main() { ios::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(16); solve(); return 0; }

template <int mod>
struct ModInt {
  int x;
  ModInt(): x(0) {}
  ModInt(long long a) { x = a % mod; if (x < 0) x += mod; }
  ModInt &operator+=(ModInt that) { x = (x + that.x) % mod; return *this; }
  ModInt &operator-=(ModInt that) { x = (x + mod - that.x) % mod; return *this; }
  ModInt &operator*=(ModInt that) { x = (long long) x * that.x % mod; return *this; }
  ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
  ModInt inverse() {
    int a = x, b = mod, u = 1, v = 0;
    while (b) { int t = a / b; a -= t * b; u -= t * v; swap(a, b); swap(u, v); }
    return ModInt(u);
  }
  #define op(o, p) ModInt operator o(ModInt that) { return ModInt(*this) p that; }
    op(+, +=) op(-, -=) op(*, *=) op(/, /=)
  #undef op
  friend ostream& operator<<(ostream &os, ModInt m) { return os << m.x; }
};

using mint = ModInt<1000000007>;

template <typename T>
struct Matrix {
  vector<vector<T>> v;
  int r, c;
  Matrix(int r, int c) : r(r), c(c) {
    v.assign(r, vector<T>(c));
  }
  Matrix(vector<vector<T>> v) : v(v) {
    assert(v.size() > 0 && v[0].size() > 0);
    r = v.size();
    c = v[0].size();
  }
  vector<T>& operator[](int x) {
    return v[x];
  }
  Matrix<T> operator*=(Matrix<T> that) {
    assert(c == that.r);
    auto ret = Matrix<T>(r, that.c);
    for (int i = 0; i < r; i++) {
      for (int j = 0; j < that.c; j++) {
        for (int k = 0; k < c; k++) {
          ret[i][j] += v[i][k] * that[k][j];
        }
      }
    }
    return *this = ret;
  }
  Matrix<T> operator*(Matrix<T> that) {
    return Matrix(*this) *= that;
  }
  Matrix<T> pow(long long n) {
    assert(r == c);
    auto ret = Matrix<T>(r, c);
    for (int i = 0; i < r; i++) {
      ret[i][i] = 1;
    }
    auto temp = *this;
    while (n) {
      if (n & 1) ret *= temp;
      n >>= 1;
      temp *= temp;
    }
    return ret;
  }
  Matrix<T> transpose() {
    Matrix<T> ret(c, r);
    for (int i = 0; i < r; i++) {
      for (int j = 0; j < c; j++) {
        ret[j][i] = v[i][j];
      }
    }
    return ret;
  }
};

void solve() {
  int n, m;
  i64 k;
  cin >> n >> m >> k;
  int p, q;
  cin >> p >> q;
  Matrix<mint> mat({
    {(mint) 1 - (mint) p / q, (mint) p / q},
    {(mint) p / q, (mint) 1 - (mint) p / q},
  });
  auto met = mat.pow(k);
  mint ans = 0;
  rep(i, n) {
    int b;
    cin >> b;
    if (i < m) {
      ans += (Matrix<mint>({{1, 0}}) * met)[0][0] * b;
    } else {
      ans += (Matrix<mint>({{0, 1}}) * met)[0][0] * b;
    }
  }
  cout << ans << endl;
}
0