結果
| 問題 |
No.978 Fibonacci Convolution Easy
|
| ユーザー |
tamaron
|
| 提出日時 | 2020-05-11 22:46:31 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 49 ms / 2,000 ms |
| コード長 | 3,996 bytes |
| コンパイル時間 | 1,476 ms |
| コンパイル使用メモリ | 172,040 KB |
| 実行使用メモリ | 50,148 KB |
| 最終ジャッジ日時 | 2024-07-19 07:28:18 |
| 合計ジャッジ時間 | 2,897 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<long long, long long> P;
struct edge{long long to,cost;};
const int inf = 1 << 27;
const long long INF = 1LL << 60;
const int COMBMAX = 1001001;
const long long MOD = 1000000007;
#define rep(i,n) for(int i = 0; i < (n); ++i)
#define eachdo(v, e) for(const auto& e : (v))
#define all(v) (v).begin(), (v).end()
#define lower_index(v, e) (long long)distance((v).begin(), lower_bound((v).begin(), (v).end(), e))
#define upper_index(v, e) (long long)distance((v).begin(), upper_bound((v).begin(), (v).end(), e))
long long mpow(long long a, long long n, long long mod = MOD){long long res = 1; while(n > 0){if(n & 1)res = res * a % mod; a = a * a % mod; n >>= 1;} return res;}
void yn(bool j){cout << (j ? "Yes" : "No") << endl; return;}
template<class Head> void pt(Head&& head){cout << head << endl; return;}
template<class Head, class... Tail> void pt(Head&& head, Tail&&... tail){cout << head << " "; pt(forward<Tail>(tail)...);}
template<class T> void debug(T v){rep(i, v.size()) cout << v[i] << " " ; cout << endl;}
template<class T> void debug2(T v){rep(i, v.size()){rep(j, v[i].size()) cout << v[i][j] << " " ; cout << endl;}}
template<class T1, class T2> long long bcount(T1 v, T2 a){return upper_index(v, a) - lower_index(v, a);}
template<class T1, class T2> inline bool chmin(T1 &a, T2 b){if(a > b){a = b; return true;} return false;}
template<class T1, class T2> inline bool chmax(T1 &a, T2 b){if(a < b){a = b; return true;} return false;}
struct mint {
long long x;
mint(long long x = 0):x((x % MOD + MOD) % MOD){}
mint& operator += (const mint a) {if ((x += a.x) >= MOD) x -= MOD; return *this;}
mint& operator -= (const mint a) {if ((x += MOD-a.x) >= MOD) x -= MOD; return *this;}
mint& operator *= (const mint a) {(x *= a.x) %= MOD; return *this;}
mint operator + (const mint a) const {mint res(*this); return res += a;}
mint operator - (const mint a) const {mint res(*this); return res -= a;}
mint operator * (const mint a) const {mint res(*this); return res *= a;}
mint pow(long long t) const {if (!t) return 1; mint a = pow(t >> 1); a *= a; if (t&1) a *= *this; return a;}
mint inv() const {return pow(MOD - 2);}
mint& operator /= (const mint a) {return (*this) *= a.inv();}
mint operator / (const mint a) const {mint res(*this); return res /= a;}
};
class combination {
public:
vector<mint> fact, ifact;
combination(int n):fact(n + 1), ifact(n + 1) {
assert(n < MOD);
fact[0] = 1;
for(int i = 1; i <= n; ++i) fact[i] = fact[i - 1] * i;
ifact[n] = fact[n].inv();
for(int i = n; i >= 1; --i) ifact[i - 1] = ifact[i] * i;
}
mint operator()(int n, int k) {
if (k < 0 || k > n) return 0;
if (COMBMAX < n){
mint ret = 1;
for(long long i = 1; i <= k; i++){
ret *= (n - i + 1);
ret /= i;
}
return ret;
}
return fact[n] * ifact[k] * ifact[n - k];
}
mint multi(long long n, long long sum, long long l, long long r){
long long m = r - l + 1;
long long t = sum - n * (l - 1);
mint ans = 0;
for(long long k = 0; k <= (t - n) / m; k++){
long long sign = k % 2 == 0 ? 1 : -1;
mint temp = this->operator() (n, k);
temp *= this->operator() (n + (t - n - m * k - 1), t - n - m * k);
temp *= sign;
ans += temp;
}
return ans;
}
} com(COMBMAX);
int main(){
ll N, p; cin >> N >> p;
vector<mint> a(N), ac(N + 1);
a[0] = 0;
a[1] = 1;
for(ll i = 2; i < N; i++){
a[i] = p;
a[i] *= a[i - 1];
a[i] += a[i - 2];
}
rep(i, N){
ac[i + 1] = ac[i] + a[i];
}
// rep(i, N + 1) pt(ac[i].x);
mint ans = 0;
rep(i, N){
mint temp = a[i];
temp *= (ac[N] - ac[i]);
ans += temp;
}
pt(ans.x);
}
tamaron