結果
問題 | No.898 tri-βutree |
ユーザー | MorikiN |
提出日時 | 2020-05-12 17:51:36 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 443 ms / 4,000 ms |
コード長 | 10,016 bytes |
コンパイル時間 | 3,184 ms |
コンパイル使用メモリ | 188,708 KB |
実行使用メモリ | 48,896 KB |
最終ジャッジ日時 | 2024-11-08 23:41:52 |
合計ジャッジ時間 | 12,139 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 267 ms
48,896 KB |
testcase_01 | AC | 22 ms
29,440 KB |
testcase_02 | AC | 22 ms
29,440 KB |
testcase_03 | AC | 23 ms
29,568 KB |
testcase_04 | AC | 22 ms
29,440 KB |
testcase_05 | AC | 22 ms
29,568 KB |
testcase_06 | AC | 22 ms
29,440 KB |
testcase_07 | AC | 430 ms
45,312 KB |
testcase_08 | AC | 439 ms
45,312 KB |
testcase_09 | AC | 431 ms
45,312 KB |
testcase_10 | AC | 431 ms
45,312 KB |
testcase_11 | AC | 426 ms
45,312 KB |
testcase_12 | AC | 438 ms
45,312 KB |
testcase_13 | AC | 434 ms
45,312 KB |
testcase_14 | AC | 436 ms
45,312 KB |
testcase_15 | AC | 432 ms
45,312 KB |
testcase_16 | AC | 443 ms
45,312 KB |
testcase_17 | AC | 440 ms
45,312 KB |
testcase_18 | AC | 441 ms
45,312 KB |
testcase_19 | AC | 438 ms
45,312 KB |
testcase_20 | AC | 439 ms
45,312 KB |
testcase_21 | AC | 435 ms
45,312 KB |
コンパイルメッセージ
main.cpp:249:55: warning: friend declaration 'std::ostream& operator<<(std::ostream&, const Matrix<Z>::mat&)' declares a non-template function [-Wnon-template-friend] 249 | friend ostream& operator<<(ostream &os, const mat &A); | ^ main.cpp:249:55: note: (if this is not what you intended, make sure the function template has already been declared and add '<>' after the function name here)
ソースコード
#include <bits/stdc++.h> #include <algorithm> #include <cmath> #include <set> #include <cstdio> #include <vector> #include <iostream> #include <utility> #include <queue> #include <map> #include <complex> #define fir first #define sec second #define sz(s) (s).size() #define pb push_back #define get(n) scanf("%d",&n); #define gets(s) string s;cin >> (s); #define prfi(n) printf("%d", &n); #define prfd(n) printf("%lf", &n); #define All(s) (s).begin(), (s).end() #define rep(i,j) for(int (i)=0;(i)<(j);(i)++) #define For(i,j,k) for(int (i)=(j);(i)<(k);(i)++) #define drep(i,j) for(int (i)=(j);(i)>=0;(i)--) #define Ford(i,j,k) for(int (i)=(j);i>=(k);i--) #define fore(c,v) for(auto (c): (v)) #define lp for(int __=0;__<n;i++) #define mem(a,b) memset(a,b,sizeof(a)); #define dump(x) std::cout << #x << " = " << (x) << std::endl; #define debug(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << " " << __FILE__ << endl; using ull = unsigned long long int; using ll = long long; using ld = long double; using pii = std::pair<int,int>; using pll = std::pair<ll, ll>; using vi = std::vector<int> ; using vvi = std::vector<vi> ; using vll = std::vector<ll>; using vvll = std::vector<vll>; using vd = std::vector<double> ; using vvd = std::vector<vd> ; using qi = std::queue<int> ; using vpii = std::vector<std::pair<int, int> >; using vpll = std::vector<pll>; using namespace std; const int Mod = (1e9) + 7; const int INF = 1e9 + 19; const ll INFL = 1e18 + 19; const int dx[] = {-1, 0, 0, 1}; const int dy[] = {0, -1, 1, 0}; const int dx2[] = {-1, -1, -1, 0, 0, 0, 1, 1, 1}; const int dy2[] = {1, 0, -1, 1, 0, -1, 1, 0, -1}; const double EPS = 1e-10; //_____________________________________Templates_________________________________________// template<class T1, class T2> inline void chmin(T1 &a, T2 b){if(a > b) a = b;} template<class T1, class T2> inline void chmax(T1 &a, T2 b){if(a < b) a = b;} template<class T> inline void pri(T a){cout << a << endl;} template<class Z> using vec = vector<Z>; template<class T> using min_priority_queue = priority_queue<T, vector<T>, greater<T>>; //mainly use for dynamic prog template<class T1, class T2> void update(T1 &a, T2 b){ a += b; if(a > Mod) a %= Mod; } inline void IN(void){ return; } template <typename First, typename... Rest> void IN(First& first, Rest&... rest){ cin >> first; IN(rest...); return; } inline void OUT(void){ cout << "\n"; return; } template <typename First, typename... Rest> void OUT(First first, Rest... rest){ cout << first << " "; OUT(rest...); return; } bool pairsort(pll pl, pll pr){ if(pl.first == pr.first)return pl.second > pr.second; return pl.first < pr.first; } int cntbit(ll a,int n,int j){int res = 0;For(i,j,n){if(a>>i & 1){res++;}}return res;} vector<int> make_bit(int a){vector<int> res; for(int i=31;i>=0;i--)if(a&(1<<i))res.pb(i);return res;} bool stdbit(int a, int b){return a&(1 << b); } int GCD(int a, int b){if(b > a)return GCD(b,a);if(a%b == 0)return b;else return GCD(b, a%b);} int LCM(int a, int b){return a*b/GCD(a,b);} int roundup(int a, int b){if(a % b == 0)return a/b;else return (a+b)/b;} int rounddown(int a, int b){if(a%b == 0)return a/b;else {return (a-b)/b;}} ll pow(ll a, ll n){ll res = 1;while(n > 0){if(n&1)res *= a; a *= a; n = n >> 1;}return res;} ll GetDiviserCount(ll N)//約数の個数 { ll res = 1; For(i,2,sqrt(N)+1) { ll cnt = 0; while(N%i == 0) { cnt++; N /= i; } res *= (cnt + 1); if(N == 1)break; } if(N != 1)res *= 2; return res; } vll GetDivisor(ll N)//約数列挙 { vll res; for(ll i = 1;i*i <= N;i++) { if(N%i == 0) { res.pb(i); if(i*i != N)res.pb(N/i); } } sort(All(res)); return res; } struct mint { ll x; // typedef long long ll; mint(ll x=0):x((x%Mod+Mod)%Mod){} mint operator-() const { return mint(-x);} mint& operator+=(const mint a) { if ((x += a.x) >= Mod) x -= Mod; return *this; } mint& operator-=(const mint a) { if ((x += Mod-a.x) >= Mod) x -= Mod; return *this; } mint& operator*=(const mint a) { (x *= a.x) %= Mod; return *this; } mint operator+(const mint a) const { mint res(*this); return res+=a; } mint operator-(const mint a) const { mint res(*this); return res-=a; } mint operator*(const mint a) const { mint res(*this); return res*=a; } mint pow(ll t) const { if (!t) return 1; mint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod mint inv() const { return pow(Mod-2); } mint& operator/=(const mint a) { return (*this) *= a.inv(); } mint operator/(const mint a) const { mint res(*this); return res/=a; } friend ostream& operator<<(ostream& os, const mint& a); }; ostream& operator<<(ostream& os, const mint& a) { os << a.x; return os; } struct combination { vector<mint> fact, ifact; combination(int n):fact(n+1),ifact(n+1) { assert(n < Mod); fact[0] = 1; for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i; ifact[n] = fact[n].inv(); for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i; } mint operator()(int n, int k) { if (k < 0 || k > n) return 0; return fact[n]*ifact[k]*ifact[n-k]; } }; template<class Z> struct Matrix { using mat = Matrix<Z>; vector<vector<Z>> m_dat; int m_h; int m_w; Matrix(int h, int w) : m_h(h), m_w(w) ,m_dat(h,vector<Z>(w)) {} vector<Z> &operator[] (int idx) { return m_dat[idx]; } mat Multiple(mat &a) { mat C(m_h, a.m_w); for(int i=0;i<m_h;i++) { for(int j=0;j<a.m_w;j++) { for(int k=0;k<m_w;k++) { C[i][j] += m_dat[i][k] * a[k][j]; } } } return C; } mat Pow(ll x) { mat B(m_h,m_w); for(int i=0;i<m_h;i++) { B[i][i] = 1; } mat A = *this; while(x > 0) { if(x&1)B = B.Multiple(A); A = A.Multiple(A); x = x >> 1; } return B; } friend ostream& operator<<(ostream &os, const mat &A); }; template<class Z> ostream& operator<<(ostream &os, Matrix<Z>& A) { for(int i=0;i<A.m_h;i++) { for(int j=0;j<A.m_w;j++) { os << A[i][j] << " "; } os << endl; } return os; } template<class T> using mat = Matrix<T>; //_____________________ following sorce code_________________________// const int max_n = 3 * (1e5) + 1; const int max_m = 83 * (1e5) + 1; int n,m,k; ll N; int h,w; string S; int a,b,c; vi v; int ans; double x,y,z; vector<int> G[1010101]; struct Edge { int to; long long int x; Edge() {} Edge(int to, long long int x) : to(to), x(x){} }; struct LCA { int n; int rmq_n; int m; int root; vector<int> vs;// 行きがけ順に頂点を並べた vector<int> depth;// 頂点ごとのふかさ vector<long long int> dist;// 最短路 vector<int> dat;// それぞれの頂点がはじめに出現するインデックス vector<Edge> G[101010]; vector<Edge> rmq_data;// rmq 用の配列 LCA(int n) : n(n), vs(2*n-1),depth(2*n-1), dat(n), dist(n) {} void AddEdge(int v, int u, long long int x) { G[v].push_back({u,x}); G[u].push_back({v,x}); } void init(int ro) { root = ro; int k = 0; dfs(root, -1, 0, k, 0); rmq_init(); } void dfs(int curr, int last,int d, int &k,long long int dis) { dat[curr] = k; vs[k] = curr; depth[k++] = d; dist[curr] = dis; for(auto e: G[curr]) { if(e.to == last)continue; dfs(e.to, curr, d+1, k, dis + e.x); vs[k] = curr; depth[k++] = d; } } Edge lca(int a, int b) { Edge e = find(min(dat[a], dat[b]), max(dat[a], dat[b]) + 1); return e; } int GetDepth(int a, int b) { return depth[dat[a]] + depth[dat[b]] - 2*depth[dat[lca(a,b).to]]; } long long int GetDist(int a, int b) { return dist[a] + dist[b] - dist[lca(a,b).to]*2; } // rmq methods void rmq_init() { m = n*2 - 1; rmq_n = 1; while(rmq_n < m)rmq_n *= 2; rmq_data.resize(rmq_n*2-1,Edge(-1,10101010101)); for(int i=0;i<m;i++) { rmq_data[i+rmq_n-1].to = vs[i]; update(i,depth[i]); } } void update(int idx, long long int x) { idx += rmq_n-1; rmq_data[idx].x = x; while(idx > 0) { idx = (idx-1)/2; rmq_data[idx] = change(rmq_data[idx*2+1], rmq_data[idx*2+2]); } } Edge change(Edge a, Edge b) { if(a.x > b.x)return b; else return a; } Edge query(int a,int b, int c, int l, int r) { Edge Unit(-1, 101010110); if(b <= l or r <= a)return Unit; if(a <= l and r <= b)return rmq_data[c]; return change(query(a,b,c*2+1,l,(r+l)/2), query(a,b,c*2+2,(r+l)/2,r)); } Edge find(int a,int b) { return query(a,b,0,0,rmq_n); } }; signed main (int argc, char* argv[]) { cin.tie(0); ios::sync_with_stdio(false); IN(n); LCA lc(n); rep(i,n-1) { ll c; IN(a,b,c); lc.AddEdge(a,b,c); } lc.init(0); int q; IN(q); ll ans = 0; rep(i,q) { IN(a,b,c); int ancestor = lc.lca(a,b).to; ans = lc.dist[a] + lc.dist[b] - lc.dist[ancestor]*2; //dump(i); if(ancestor == a or ancestor == b) { int node; if(ancestor == a)node = b; else node = a; if((k = lc.lca(c,ancestor).to) == ancestor) { m = lc.lca(node,c).to; ans += lc.dist[c] - lc.dist[m]; } else { ans += lc.dist[ancestor] + lc.dist[c] - 2*lc.dist[k]; } } else { if(( k = lc.lca(ancestor,c).to ) == ancestor) { if((k = lc.lca(c,b).to) != ancestor or k == b) { ans += lc.dist[c] - lc.dist[k]; } else { k = lc.lca(a,c).to; ans += lc.dist[c] - lc.dist[k]; } } else { ans += lc.dist[ancestor] + lc.dist[c] - lc.dist[k]*2; } } pri(ans); } //for(auto c : ans){cout << c << endl;} //cout << fixed << setprecision(15) << ans << endl; return 0; }