結果
| 問題 | No.248 ミラー君の宿題 |
| コンテスト | |
| ユーザー |
maspy
|
| 提出日時 | 2020-05-13 23:16:53 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 2,060 bytes |
| 記録 | |
| コンパイル時間 | 335 ms |
| コンパイル使用メモリ | 82,056 KB |
| 実行使用メモリ | 78,072 KB |
| 最終ジャッジ日時 | 2024-09-14 15:44:57 |
| 合計ジャッジ時間 | 7,828 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 18 |
ソースコード
import sys
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
def ord_2(n):
e = 0
while n % 2 == 0:
e += 1
n >>= 1
return e
def argmax_distribution(A):
U = max(A)
n = len(A)
dist = [0] * (1<<n)
full = (1<<n) - 1
dist[full] += 0.5 ** sum(A)
for u in range(1, U+1):
eq = [0.0] * (1<<n)
low = [0.0] * (1<<n)
eq[0] = 1.0
low[0] = 1.0
for i in range(n):
t = 0.5 ** (A[i] - u + 1)
p_eq = t if A[i] >= u else 0.0
p_low = t if u <= A[i] + 1 else 1.0
for s in range(1<<i):
eq[s^(1<<i)] = eq[s] * p_eq
low[s^(1<<i)] = low[s] * p_low
for s in range(1, 1<<n):
dist[s] += eq[s] * low[full^s]
return dist
def solve(nums):
N = len(nums)
dp = [0.0] * (1<<N)
A = [ord_2(p-1) for p in nums]
def compute_dp(s):
if s == 0:
return 0.0
I = [i for i in range(N) if s & (1<<i)]
n = len(I)
if n == 1:
return 1.0
p_loop = 0
x = 1.0
# gcd で遷移する場合
gcd_prob = [1.0] * (1<<n)
ind = [0] * (1<<n)
for k in range(n):
i = I[k]
for j in range(1<<k):
ind[j + (1<<k)] = ind[j] + (1<<i)
gcd_prob[j + (1<<k)] = gcd_prob[j] / (nums[i])
gcd_prob[j] -= gcd_prob[j + (1<<k)]
p_loop += gcd_prob[-1]
B = [A[i] for i in I]
for j in range((1<<n) - 1):
x += gcd_prob[j] * (dp[ind[j]] + dp[s^ind[j]])
# 2^n乗根で遷移する場合
p0 = gcd_prob[0]
dist = argmax_distribution([A[i] for i in I])
p_loop += p0 * dist[-1]
for j in range((1<<n) - 1):
x += p0 * dist[j] * (dp[ind[j]] + dp[s^ind[j]])
return x / (1 - p_loop)
for s in range(1<<N):
dp[s] = compute_dp(s)
return dp[-1]
solve([3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43])
maspy