結果
問題 |
No.248 ミラー君の宿題
|
ユーザー |
![]() |
提出日時 | 2020-05-13 23:17:43 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 2,103 ms / 5,000 ms |
コード長 | 2,135 bytes |
コンパイル時間 | 937 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 82,520 KB |
最終ジャッジ日時 | 2024-09-14 15:45:17 |
合計ジャッジ時間 | 16,716 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 18 |
ソースコード
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines def ord_2(n): e = 0 while n % 2 == 0: e += 1 n >>= 1 return e def argmax_distribution(A): U = max(A) n = len(A) dist = [0] * (1<<n) full = (1<<n) - 1 dist[full] += 0.5 ** sum(A) for u in range(1, U+1): eq = [0.0] * (1<<n) low = [0.0] * (1<<n) eq[0] = 1.0 low[0] = 1.0 for i in range(n): t = 0.5 ** (A[i] - u + 1) p_eq = t if A[i] >= u else 0.0 p_low = t if u <= A[i] + 1 else 1.0 for s in range(1<<i): eq[s^(1<<i)] = eq[s] * p_eq low[s^(1<<i)] = low[s] * p_low for s in range(1, 1<<n): dist[s] += eq[s] * low[full^s] return dist def solve(nums): N = len(nums) dp = [0.0] * (1<<N) A = [ord_2(p-1) for p in nums] def compute_dp(s): if s == 0: return 0.0 I = [i for i in range(N) if s & (1<<i)] n = len(I) if n == 1: return 1.0 p_loop = 0 x = 1.0 # gcd で遷移する場合 gcd_prob = [1.0] * (1<<n) ind = [0] * (1<<n) for k in range(n): i = I[k] for j in range(1<<k): ind[j + (1<<k)] = ind[j] + (1<<i) gcd_prob[j + (1<<k)] = gcd_prob[j] / (nums[i]) gcd_prob[j] -= gcd_prob[j + (1<<k)] p_loop += gcd_prob[-1] B = [A[i] for i in I] for j in range((1<<n) - 1): x += gcd_prob[j] * (dp[ind[j]] + dp[s^ind[j]]) # 2^n乗根で遷移する場合 p0 = gcd_prob[0] dist = argmax_distribution([A[i] for i in I]) p_loop += p0 * dist[-1] for j in range((1<<n) - 1): x += p0 * dist[j] * (dp[ind[j]] + dp[s^ind[j]]) return x / (1 - p_loop) for s in range(1<<N): dp[s] = compute_dp(s) return dp[-1] T = int(readline()) for _ in range(T): N = int(readline()) nums = list(map(int, readline().split())) print(solve(nums))