結果
| 問題 | 
                            No.95 Alice and Graph
                             | 
                    
| コンテスト | |
| ユーザー | 
                             maspy
                         | 
                    
| 提出日時 | 2020-05-14 18:11:34 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                RE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,598 bytes | 
| コンパイル時間 | 334 ms | 
| コンパイル使用メモリ | 82,432 KB | 
| 実行使用メモリ | 90,368 KB | 
| 最終ジャッジ日時 | 2024-09-15 12:44:46 | 
| 合計ジャッジ時間 | 13,289 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge3 / judge6 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| other | AC * 9 RE * 5 | 
ソースコード
import sys
from collections import deque
read = sys.stdin.buffer.read
readline = sys.stdin.buffer.readline
readlines = sys.stdin.buffer.readlines
N, M, K = map(int, readline().split())
m = map(int, read().split())
G = [[] for _ in range(N)]
for u, v in zip(m, m):
    u -= 1
    v -= 1
    G[u].append(v)
    G[v].append(u)
def bfs(v):
    dist = [1000] * N
    q = deque([v])
    dist[v] = 0
    while q:
        v = q.popleft()
        for w in G[v]:
            if dist[w] != 1000:
                continue
            dist[w] = dist[v] + 1
            q.append(w)
    return dist
dist_mat = [bfs(v) for v in range(N)]
def extract_subgraph(A):
    assert A[0] == 0
    mat = []
    for i in A:
        mat.append([dist_mat[i][j] for j in A])
    return mat
dp = [[K + 1] * (K + 1) for _ in range(1 << (K + 1))]
def min_hamilton_path(A):
    mat = extract_subgraph(A)
    n = len(A)
    INF = K + 1
    global dp
    dp[1][0] = 0
    for s in range(3, 1 << n, 2):
        for i in range(n):
            dp[s][i] = INF
            if not (s & (1 << i)):
                continue
            t = s ^ (1 << i)
            x = INF
            for j in range(n):
                if not (t & (1 << j)):
                    continue
                y = dp[t][j] + mat[i][j]
                if x > y:
                    x = y
            dp[s][i] = x
    full = (1 << n) - 1
    return min(dp[full])
A = [0]
for n in range(N - 1, 0, -1):
    A.append(n)
    if min_hamilton_path(A) > K:
        A.pop()
    if len(A) == K + 1:
        break
answer = sum((1 << x) - 1 for x in A)
print(answer)
            
            
            
        
            
maspy