結果
問題 |
No.538 N.G.S.
|
ユーザー |
![]() |
提出日時 | 2020-05-20 15:00:16 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 37 ms / 2,000 ms |
コード長 | 1,916 bytes |
コンパイル時間 | 114 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-10-01 23:32:55 |
合計ジャッジ時間 | 3,557 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 51 |
ソースコード
import sys def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [[c] * b for i in range(a)] def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print('Yes') def No(): print('No') def YES(): print('YES') def NO(): print('NO') sys.setrecursionlimit(10 ** 9) INF = 10 ** 18 MOD = 10 ** 9 + 7 EPS = 10 ** -10 def gauss_jordan(A, b): N = len(A) B = list2d(N, N+1, 0) for i in range(N): for j in range(N): B[i][j] = A[i][j] # 行列Aの後ろにbを並べ同時に処理する for i in range(N): B[i][N] = b[i] for i in range(N): # 注目している変数の係数の絶対値が大きい式をi番目に持ってくる pivot = i for j in range(i, N): if abs(B[j][i]) > abs(B[pivot][i]): pivot = j B[i], B[pivot] = B[pivot], B[i] # 解がないか、一意でない if abs(B[i][i]) < EPS: return [] # 注目している変数の係数を1にする for j in range(i+1, N+1): B[i][j] /= B[i][i] for j in range(N): if i != j: # j番目の式からi番目の変数を消去 for k in range(i+1, N+1): B[j][k] -= B[j][i] * B[i][k] res = [0] * N # 後ろに並べたbが解になる for i in range(N): res[i] = B[i][N] return res b1, b2, b3 = MAP() A = list2d(2, 2, 1) A[0][0] = b2 A[1][0] = b1 B = [0] * 2 B[0] = b3 B[1] = b2 r, d = gauss_jordan(A, B) ans = round(b3*r + d) print(ans)