結果

問題 No.41 貯金箱の溜息(EASY)
ユーザー Ricky_pon
提出日時 2020-05-20 16:27:12
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 9 ms / 5,000 ms
コード長 3,381 bytes
コンパイル時間 2,632 ms
コンパイル使用メモリ 195,464 KB
最終ジャッジ日時 2025-01-10 13:24:36
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 2
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:135:20: warning: format ‘%lld’ expects argument of type ‘long long int’, but argument 2 has type ‘modint<1000000009>::i64’ {aka ‘long int’} [-Wformat=]
  135 |         printf("%lld\n", dp[m/111111].a);
      |                 ~~~^     ~~~~~~~~~~~~~~
      |                    |                  |
      |                    long long int      modint<1000000009>::i64 {aka long int}
      |                 %ld
main.cpp:131:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  131 |     scanf("%d", &t);
      |     ~~~~~^~~~~~~~~~
main.cpp:134:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
  134 |         scanf("%lld", &m);
      |         ~~~~~^~~~~~~~~~~~

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define For(i, a, b) for(int (i)=(int)(a); (i)<(int)(b); ++(i))
#define rFor(i, a, b) for(int (i)=(int)(a)-1; (i)>=(int)(b); --(i))
#define rep(i, n) For((i), 0, (n))
#define rrep(i, n) rFor((i), (n), 0)
#define fi first
#define se second
using namespace std;
typedef long long lint;
typedef unsigned long long ulint;
typedef pair<int, int> pii;
typedef pair<lint, lint> pll;
template<class T> bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;}
template<class T> bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;}
template<class T> T div_floor(T a, T b){
if(b < 0) a *= -1, b *= -1;
return a>=0 ? a/b : (a+1)/b-1;
}
template<class T> T div_ceil(T a, T b){
if(b < 0) a *= -1, b *= -1;
return a>0 ? (a-1)/b+1 : a/b;
}
constexpr lint mod = 1e9+7;
constexpr lint INF = mod * mod;
constexpr int MAX = 200010;
template<int_fast64_t MOD> struct modint{
using i64=int_fast64_t;
i64 a;
modint(const i64 a_=0): a(a_){
if(a>MOD) a%=MOD;
else if(a<0) (a%=MOD)+=MOD;
}
modint inv(){
i64 t=1, n=MOD-2, x=a;
while(n){
if(n&1) (t*=x)%=MOD;
(x*=x)%=MOD;
n>>=1;
}
modint ret(t);
return ret;
}
bool operator==(const modint x) const{return a==x.a;}
bool operator!=(const modint x) const{return a!=x.a;}
modint operator+(const modint x) const{
return modint(*this)+=x;
}
modint operator-(const modint x) const{
return modint(*this)-=x;
}
modint operator*(const modint x) const{
return modint(*this)*=x;
}
modint operator/(const modint x) const{
return modint(*this)/=x;
}
modint operator^(const lint x) const{
return modint(*this)^=x;
}
modint &operator+=(const modint &x){
a+=x.a;
if(a>=MOD) a-=MOD;
return *this;
}
modint &operator-=(const modint &x){
a-=x.a;
if(a<0) a+=MOD;
return *this;
}
modint &operator*=(const modint &x){
(a*=x.a)%=MOD;
return *this;
}
modint &operator/=(modint x){
(a*=x.inv().a)%=MOD;
return *this;
}
modint &operator^=(lint n){
i64 ret=1;
while(n){
if(n&1) (ret*=a)%=MOD;
(a*=a)%=MOD;
n>>=1;
}
a=ret;
return *this;
}
modint operator-() const{
return modint(0)-*this;
}
modint &operator++(){
return *this+=1;
}
modint &operator--(){
return *this-=1;
}
bool operator<(const modint x) const{
return a<x.a;
}
};
using mint=modint<1000000009>;
vector<mint> fact;
vector<mint> revfact;
void setfact(int n){
fact.resize(n+1); revfact.resize(n+1);
fact[0] = 1;
rep(i, n) fact[i+1] = fact[i] * mint(i+1);
revfact[n] = fact[n].inv();
for(int i=n-1; i>=0; i--) revfact[i] = revfact[i+1] * mint(i+1);
}
mint getC(int n, int r){
if(n<r) return 0;
return fact[n] * revfact[r] * revfact[n-r];
}
int main(){
mint dp[MAX];
dp[0] = 1;
rep(i, 9)rep(j, MAX)if(dp[j] != 0){
if(j+(i+1) < MAX) dp[j+(i+1)] += dp[j];
}
partial_sum(dp, dp+MAX, dp);
int t;
scanf("%d", &t);
rep(tt, t){
lint m;
scanf("%lld", &m);
printf("%lld\n", dp[m/111111].a);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0