結果
| 問題 |
No.1058 素敵な数
|
| コンテスト | |
| ユーザー |
opt
|
| 提出日時 | 2020-05-22 21:30:58 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,020 bytes |
| コンパイル時間 | 2,928 ms |
| コンパイル使用メモリ | 204,552 KB |
| 最終ジャッジ日時 | 2025-01-10 14:19:12 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 2 WA * 7 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using V = vector<int>;
using Vll = vector<ll>;
using Vld = vector<ld>;
using Vbo = vector<bool>;
using VV = vector<V>;
using VVll = vector<Vll>;
using VVld = vector<Vld>;
using VVbo = vector<Vbo>;
using P = pair<int, int>;
using Pll = pair<ll, ll>;
using Pld = pair<ld, ld>;
#define rep2(i, m, n) for(ll i=int(m); i<int(n); ++i)
#define drep2(i, m, n) for(ll i=int(m)-1; i>=int(n); --i)
#define rep(i, n) rep2(i, 0, n)
#define drep(i, n) drep2(i, n, 0)
#define all(a) a.begin(), a.end()
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
template<typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; }
template<typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; }
template<typename T1, typename T2> istream &operator>>(istream &is, pair<T1, T2> &p) { is >> p.first >> p.second; return is; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p) { os << "(" << p.first << ", " << p.second << ")"; return os; }
template<typename T> istream &operator>>(istream &is, vector<T> &v) { for (auto &e : v) is >> e; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &v) { for (auto &e : v) os << e << " "; return os; }
template<typename T> inline int count_between(vector<T> &a, T l, T r) { return lower_bound(all(a), r) - lower_bound(all(a), l); } // [l, r)
inline int Log2(ll x) { int k; for (k = 0; x > 0; ++k) x >>= 1; return k; } // number of binary digits
const int INF = 1<<30;
const ll INFll = 1ll<<62;
const ld EPS = 1e-10;
const ld PI = acos(-1.0);
const int MOD = int(1e9)+7;
struct Eratos {
vector<int> primes, min_factor;
vector<bool> isprime;
Eratos(int MAX) : primes(),
isprime(MAX+1, true),
min_factor(MAX+1, -1) {
isprime[0] = isprime[1] = false;
min_factor[0] = 0, min_factor[1] = 1;
for (int i = 2; i <= MAX; i++) {
if (!isprime[i]) continue;
primes.push_back(i);
min_factor[i] = i;
for (int j = i*2; j <= MAX; j += i) {
isprime[j] = false;
if (min_factor[j] == -1) min_factor[j] = i;
}
}
}
// prime factorization
vector<pair<int,int>> factorize(int n) {
vector<pair<int,int>> res;
while (n != 1) {
int prime = min_factor[n];
int exp = 0;
while (min_factor[n] == prime) {
exp++;
n /= prime;
}
res.push_back(make_pair(prime, exp));
}
return res;
}
};
int main() {
ll n; cin >> n;
if (n == 1) {
cout << 1 << "\n";
return 0;
}
Eratos E(int(2e5));
Vll p;
rep2(i, 1e5, 2e5) {
if (E.isprime[i]) p.push_back(i);
if (p.size() == 10) break;
}
Vll q;
rep(i, 10) rep(j, 10)
q.push_back(p[i] * p[j]);
sort(all(q));
ll ans = q[n-2];
cout << ans << "\n";
return 0;
}
opt