結果

問題 No.1058 素敵な数
ユーザー nullnull
提出日時 2020-05-22 21:57:15
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 3,420 bytes
コンパイル時間 1,418 ms
コンパイル使用メモリ 145,132 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-05 17:15:43
合計ジャッジ時間 1,905 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

/*
このコード、と~おれ!
Be accepted!
∧_∧ 
(。・ω・。)つ━☆・*。
⊂   ノ    ・゜+.
 しーJ   °。+ *´¨)
          .· ´¸.·*´¨) ¸.·*¨)
		            (¸.·´ (¸.·'* ☆
*/

#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstring>
#include <vector>
#include <numeric>
#include <iostream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <regex>
#include <functional>
#include <complex>
#include <list>
#include <cassert>
#include <iomanip>
#include <set>
#include <stack>
#include <bitset>
/*
多倍長整数, cpp_intで宣言
#include <boost/multiprecision/cpp_int.hpp>
using namespace boost::multiprecision;
*/

//#pragma gcc target ("avx2")
//#pragma gcc optimization ("o3")
//#pragma gcc optimization ("unroll-loops")
#define rep(i, n) for(int i = 0; i < (n); ++i)
#define rep1(i, n) for(int i = 1; i <= (n); ++i)
#define rep2(i, n) for(int i = 2; i < (n); ++i)
#define repr(i, n) for(int i = n; i >= 0; --i)
#define reprm(i, n) for(int i = n - 1; i >= 0; --i)
#define printynl(a) printf(a ? "yes\n" : "no\n")
#define printyn(a) printf(a ? "Yes\n" : "No\n")
#define printYN(a) printf(a ? "YES\n" : "NO\n")
#define printim(a) printf(a ? "possible\n" : "imposible\n")
#define printdb(a) printf("%.50lf\n", a) //少数出力
#define printLdb(a) printf("%.50Lf\n", a) //少数出力
#define printdbd(a) printf("%.16lf\n", a) //少数出力(桁少なめ)
#define prints(s) printf("%s\n", s.c_str()) //string出力
#define all(x) (x).begin(), (x).end()
#define allsum(a, b, c) ((a + b) * c / 2LL) //等差数列の和、初項,末項,項数
#define pb push_back
#define rpriq priq<int, vector<int>, greater<int>>
#define deg_to_rad(deg) (((deg)/360.0L)*2.0L*PI)
#define rad_to_deg(rad) (((rad)/2.0L/PI)*360.0L)
#define Please return
#define AC 0
#define manhattan_dist(a, b, c, d) (abs(a - c) + abs(b - d)) /*(a, b) から (c, d) のマンハッタン距離 */
#define inf numeric_limits<double>::infinity();
#define linf numeric_limits<long double>::infinity()


using ll = long long;

constexpr int INF = 1073741823;
constexpr int MINF = -1073741823;
constexpr ll LINF = ll(4661686018427387903);
constexpr ll MOD = 1000000007;
constexpr long double eps = 1e-9;
const long double PI = acosl(-1.0L);

using namespace std;

void scans(string& str) {
	char c;
	str = "";
	scanf("%c", &c);
	if (c == '\n')scanf("%c", &c);
	while (c != '\n' && c != -1 && c != ' ') {
		str += c;
		scanf("%c", &c);
	}
}

void scanc(char& str) {
	char c;
	scanf("%c", &c);
	if (c == -1)return;
	while (c == '\n') {
		scanf("%c", &c);
	}
	str = c;
}

double acot(double x) {
	return PI / 2 - atan(x);
}

ll LSB(ll n) { return (n & (-n)); }

/*-----------------------------------------ここからコード-----------------------------------------*/

bool is_prime(unsigned long long n) {
	if (n == 1)return true;
	for (unsigned long long i = 2; i * i <= n; ++i) {
		if (n % i == 0)return false;
	}
	return true;
}

int main() {

	int n;
	scanf("%d", &n);
	unsigned long long ans = 1e5 + 1;
	int cnt = 10;
	vector<unsigned long long> a(10), b;
	while (cnt) {
		if (is_prime(ans)) {
			--cnt;
			a[9 - cnt] = ans;
		}
		++ans;
	}
	b.push_back(1);
	rep(i, 10) {
		rep(j, 10) {
			b.push_back(a[i] * a[j]);
		}
	}
	sort(all(b));
	printf("%llu\n", b[n - 1]);

	Please AC;
}
0