結果
問題 | No.1059 素敵な集合 |
ユーザー | Ricky_pon |
提出日時 | 2020-05-23 11:31:39 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 233 ms / 2,000 ms |
コード長 | 7,510 bytes |
コンパイル時間 | 2,520 ms |
コンパイル使用メモリ | 219,920 KB |
実行使用メモリ | 103,356 KB |
最終ジャッジ日時 | 2024-07-23 09:37:57 |
合計ジャッジ時間 | 4,456 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 233 ms
103,356 KB |
testcase_02 | AC | 41 ms
21,080 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 31 ms
16,280 KB |
testcase_07 | AC | 30 ms
16,288 KB |
testcase_08 | AC | 42 ms
21,612 KB |
testcase_09 | AC | 11 ms
7,652 KB |
testcase_10 | AC | 59 ms
28,292 KB |
testcase_11 | AC | 34 ms
17,240 KB |
testcase_12 | AC | 19 ms
10,800 KB |
testcase_13 | AC | 68 ms
32,000 KB |
testcase_14 | AC | 4 ms
6,940 KB |
testcase_15 | AC | 122 ms
54,404 KB |
testcase_16 | AC | 37 ms
19,376 KB |
testcase_17 | AC | 37 ms
19,056 KB |
testcase_18 | AC | 36 ms
21,164 KB |
testcase_19 | AC | 223 ms
98,136 KB |
testcase_20 | AC | 213 ms
95,720 KB |
testcase_21 | AC | 121 ms
53,208 KB |
ソースコード
#include <bits/stdc++.h> #define For(i, a, b) for(int (i)=(int)(a); (i)<(int)(b); ++(i)) #define rFor(i, a, b) for(int (i)=(int)(a)-1; (i)>=(int)(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair<int, int> pii; typedef pair<lint, lint> pll; template<class T> bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;} template<class T> bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;} template<class T> T div_floor(T a, T b){ if(b < 0) a *= -1, b *= -1; return a>=0 ? a/b : (a+1)/b-1; } template<class T> T div_ceil(T a, T b){ if(b < 0) a *= -1, b *= -1; return a>0 ? (a-1)/b+1 : a/b; } constexpr lint mod = 1e9+7; constexpr lint INF = mod * mod; constexpr int MAX = 1000010; typedef struct UnionFindTree{ vector<int> par; UnionFindTree(int n): par(n, -1){} int find(int x){ if(par[x] < 0) return x; return par[x] = find(par[x]); } int size(int x){ return -par[find(x)]; } bool unite(int x, int y){ x = find(x); y = find(y); if(x == y) return false; if(size(x) < size(y)) swap(x, y); par[x] += par[y]; par[y] = x; return true; } bool same(int x, int y){ return find(x) == find(y); } }UF; template<typename T> struct edge{ int from, to; T cost; edge(int f, int t, T c): from(f), to(t), cost(c){} }; template<typename T> struct Graph{ vector<vector<edge<T>>> G; int n; Graph(int n_): n(n_){ G.resize(n); } void add_edge(int f, int t, T c){ G[f].emplace_back(f, t, c); } pair<bool, vector<T>> bellman_ford(int s){ T d_INF = numeric_limits<T>::max(); vector<T> d(n, d_INF); vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); d[s] = 0; rep(i, n)for(edge<T> &e: E){ if(d[e.from] != d_INF && d[e.from] + e.cost < d[e.to]){ d[e.to] = d[e.from] + e.cost; if(i == n-1) return make_pair(true, d); } } return make_pair(false, d); } vector<T> dijkstra(int s){ using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; vector<T> d(n, numeric_limits<T>::max()); d[s] = 0; que.push(P((T)0, s)); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(d[v] < p.first) continue; for(edge<T> &e : G[v]){ if(d[e.to] > d[v] + e.cost){ d[e.to] = d[v] + e.cost; que.push(P(d[e.to], e.to)); } } } return d; } pair<bool, vector<vector<T>>> warshall_floyd(){ T d_INF = numeric_limits<T>::max(); vector<vector<T>> d = vector<vector<T>>(n, vector<T>(n, d_INF)); rep(i, n){ for(edge<T> &e: G[i]) d[i][e.to] = e.cost; d[i][i] = 0; } rep(k, n)rep(i, n)rep(j, n)if(d[i][k] < d_INF && d[k][j] < d_INF){ d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } rep(i, n)if(d[i][i] < 0) return make_pair(true, d); return make_pair(false, d); } pair<T, Graph<T>> kruskal(){ vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); sort(E.begin(), E.end(), [](const edge<T> &e1, const edge<T> &e2){return e1.cost < e2.cost;}); UF uf(n); T ret = 0; Graph<T> MST(n); for(edge<T> &e: E){ if(!uf.same(e.from, e.to)){ uf.unite(e.from, e.to); ret += e.cost; MST.add_edge(e.from, e.to, e.cost); MST.add_edge(e.to, e.from, e.cost); } } return {ret, MST}; } pair<bool, vector<int>> toposo(){ vector<int> ret(n, -1), in(n, 0); rep(i, n)for(edge<T> &e: G[i]) ++in[e.to]; int cur = 0; stack<int> st; rep(i, n)if(!in[i]) st.push(i); if(st.empty()) return make_pair(false, ret); while(!st.empty()){ int v = st.top(); st.pop(); ret[cur++] = v; for(edge<T> &e: G[v]){ if(!in[e.to]) return make_pair(false, ret); --in[e.to]; if(!in[e.to]) st.push(e.to); } } return make_pair(cur==n, ret); } bool has_cycle(){ return !toposo().fi; } void scc_dfs(int v, vector<bool> &used, vector<int> &vs){ used[v] = true; for(edge<T> &e: G[v])if(!used[e.to]) scc_dfs(e.to, used, vs); vs.push_back(v); } void scc_rdfs(int v, int k, vector<int> &cmp, vector<bool> &used, vector<vector<int>> &rG){ used[v] = true; cmp[v] = k; for(int nv: rG[v])if(!used[nv]) scc_rdfs(nv, k, cmp, used, rG); } tuple<int, vector<int>, vector<vector<int>>> scc(){ vector<vector<int>> rG(n); rep(i, n)for(edge<T> &e: G[i]) rG[e.to].push_back(i); vector<bool> used(n, false); vector<int> vs; vector<int> vtoc(n); rep(i, n)if(!used[i]) scc_dfs(i, used, vs); fill(used.begin(), used.end(), false); int k = 0; vector<vector<int>> ctov=vector<vector<int>>(n, vector<int>()); rrep(i, n)if(!used[vs[i]]) scc_rdfs(vs[i], k++, vtoc, used, rG, ctov); return make_tuple(k, vtoc, ctov); } int bridge_dfs(int v, int pv, int &idx, vector<int> &ord, vector<int> &low, vector<pii> &bridge){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=pv){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], bridge_dfs(nv, v, idx, ord, low, bridge)); if(low[nv]>ord[v]) bridge.emplace_back(min(v, nv), max(v, nv)); } else chmin(low[v], ord[nv]); } return low[v]; } vector<pii> get_bridge(){ vector<int> ord(n, -1), low(n, -1); vector<pii> bridge; int idx=0; bridge_dfs(0, -1, idx, ord, low, bridge); sort(bridge.begin(), bridge.end()); bridge.erase(unique(bridge.begin(), bridge.end()), bridge.end()); return bridge; } int art_dfs(int v, int prev, int &idx, vector<int> &ord, vector<int> &low, vector<int> &art){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=prev){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], art_dfs(nv, v, idx, ord, low, art)); if((prev<0 && ord[nv]!=1) || (prev>=0 && low[nv]>=ord[v])){ art.push_back(v); } } else chmin(low[v], ord[nv]); } return low[v]; } vector<int> get_art(){ vector<int> ord(n, -1), low(n, -1), art; int idx=0; art_dfs(0, -1, idx, ord, low, art); sort(art.begin(), art.end()); art.erase(unique(art.begin(), art.end()), art.end()); return art; } }; int main(){ int L, R; scanf("%d%d", &L, &R); Graph<int> gr(R-L+1); For(i, L, R){ gr.add_edge(i-L, i+1-L, 1); for(int j=2; i*j<=R; ++j){ gr.add_edge(i-L, i*j-L, 0); } } auto mst = gr.kruskal(); printf("%d\n", mst.fi); }