結果
問題 | No.1066 #いろいろな色 / Red and Blue and more various colors (Easy) |
ユーザー |
![]() |
提出日時 | 2020-05-25 19:20:43 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 35 ms / 2,000 ms |
コード長 | 4,375 bytes |
コンパイル時間 | 2,153 ms |
コンパイル使用メモリ | 185,616 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-06 02:14:43 |
合計ジャッジ時間 | 3,417 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 24 |
ソースコード
#include <bits/stdc++.h>using namespace std;#define int long long#define pb push_back#define eb emplace_back#define FOR(i,a,b) for(int i=(a);i<(int)(b);i++)#define rep(i,n) FOR(i,0,n)#define RFOR(i,a,b) for(int (i)=(a);(i)>=(int)(b);(i)--)#define rrep(i,n) RFOR(i,n,0)#define all(a) (a).begin(),(a).end()#define rall(a) (a).rbegin(),(a).rend()#define ve vector#define vi vector<int>#define vp vector<pair<int,int>>#define vvi vector<vector<int>>#define UNIQUE(a) sort(all(a)), a.erase(unique(all(a)), a.end())#define Double doubleusing ll = long long;const ll mod = 998244353;#define sz(c) ((int)(c).size())#define ten(x) ((int)1e##x)typedef pair<int, int> Pii;template<class T> T extgcd(T a, T b, T& x, T& y) { for (T u = y = 1, v = x = 0; a;) { T q = b / a; swap(x -= q * u, u); swap(y -= q * v, v); swap(b-= q * a, a); } return b; }template<class T> T mod_inv(T a, T m) { T x, y; extgcd(a, m, x, y); return (m + x % m) % m; }ll mod_pow(ll a, ll n, ll mod) { ll ret = 1; ll p = a % mod; while (n) { if (n & 1) ret = ret * p % mod; p = p * p % mod; n >>= 1; } return ret; }template<int mod, int primitive_root>class NTT {public:int get_mod() const { return mod; }void _ntt(vector<ll>& a, int sign) {const int n = sz(a);assert((n ^ (n&-n)) == 0); //n = 2^kconst int g = 3; //g is primitive root of modint h = (int)mod_pow(g, (mod - 1) / n, mod); // h^n = 1if (sign == -1) h = (int)mod_inv(h, mod); //h = h^-1 % mod//bit reverseint i = 0;for (int j = 1; j < n - 1; ++j) {for (int k = n >> 1; k >(i ^= k); k >>= 1);if (j < i) swap(a[i], a[j]);}for (int m = 1; m < n; m *= 2) {const int m2 = 2 * m;const ll base = mod_pow(h, n / m2, mod);ll w = 1;rep(x, m) {for (int s = x; s < n; s += m2) {ll u = a[s];ll d = a[s + m] * w % mod;a[s] = u + d;if (a[s] >= mod) a[s] -= mod;a[s + m] = u - d;if (a[s + m] < 0) a[s + m] += mod;}w = w * base % mod;}}for (auto& x : a) if (x < 0) x += mod;}void ntt(vector<ll>& input) {_ntt(input, 1);}void intt(vector<ll>& input) {_ntt(input, -1);const int n_inv = mod_inv(sz(input), mod);for (auto& x : input) x = x * n_inv % mod;}// 畳み込み演算を行うvector<ll> convolution(const vector<ll>& a, const vector<ll>& b){int ntt_size = 1;while (ntt_size < sz(a) + sz(b)) ntt_size *= 2;vector<ll> _a = a, _b = b;_a.resize(ntt_size); _b.resize(ntt_size);ntt(_a);ntt(_b);rep(i, ntt_size){(_a[i] *= _b[i]) %= mod;}intt(_a);return _a;}};ll garner(vector<Pii> mr, int mod){mr.emplace_back(mod, 0);vector<ll> coffs(sz(mr), 1);vector<ll> constants(sz(mr), 0);rep(i, sz(mr) - 1){// coffs[i] * v + constants[i] == mr[i].second (mod mr[i].first) を解くll v = (mr[i].second - constants[i]) * mod_inv<ll>(coffs[i], mr[i].first) % mr[i].first;if (v < 0) v += mr[i].first;for (int j = i + 1; j < sz(mr); j++) {(constants[j] += coffs[j] * v) %= mr[j].first;(coffs[j] *= mr[i].first) %= mr[j].first;}}return constants[sz(mr) - 1];}typedef NTT<167772161, 3> NTT_1;typedef NTT<469762049, 3> NTT_2;typedef NTT<1224736769, 3> NTT_3;typedef NTT<998244353, 3> nntttt;//任意のmodで畳み込み演算 O(n log n)vector<ll> int32mod_convolution(vector<ll> a, vector<ll> b,int mod){for (auto& x : a) x %= mod;for (auto& x : b) x %= mod;NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;auto x = ntt1.convolution(a, b);auto y = ntt2.convolution(a, b);auto z = ntt3.convolution(a, b);vector<ll> ret(sz(x));vector<Pii> mr(3);rep(i, sz(x)){mr[0].first = ntt1.get_mod(), mr[0].second = (int)x[i];mr[1].first = ntt2.get_mod(), mr[1].second = (int)y[i];mr[2].first = ntt3.get_mod(), mr[2].second = (int)z[i];ret[i] = garner(mr, mod);}return ret;}nntttt ntT;vector<ll> A;vector<ll> saiki(int l, int r) {if (r == l + 1) return vector<int>{A[l], 1};vector<ll> tL = saiki(l, (l+r)/2), tR = saiki((l+r)/2, r);vector<ll> L, R;for (auto &&elm : tL) L.pb(elm);for (auto &&elm : tR) R.pb(elm);return ntT.convolution(L, R);}signed main() {int n; cin >> n; int m; cin >> m;A.resize(n); rep (i, n) cin >> A[i], A[i]--, A[i] %= mod;auto ans = saiki(0, n);rep (i, m) {int a; cin >> a;cout << ans[a] << endl;}}