結果
| 問題 |
No.720 行列のできるフィボナッチ数列道場 (2)
|
| コンテスト | |
| ユーザー |
realDivineJK
|
| 提出日時 | 2020-05-26 02:50:39 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 32 ms / 2,000 ms |
| コード長 | 2,173 bytes |
| コンパイル時間 | 73 ms |
| コンパイル使用メモリ | 12,928 KB |
| 実行使用メモリ | 11,136 KB |
| 最終ジャッジ日時 | 2024-10-13 02:27:04 |
| 合計ジャッジ時間 | 1,643 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
N, M = map(int, input().split())
mod = int(1e9) + 7
maxf = 0 # <-- input factional limitation
def doubling(n, m):
y = 1
base = n
tmp = m
while tmp != 0:
if tmp % 2 == 1:
y *= base
y %= mod
base *= base
base %= mod
tmp //= 2
return y
def inved(a):
x, y, u, v, k, l = 1, 0, 0, 1, a, mod
while l != 0:
x, y, u, v = u, v, x - u * (k // l), y - v * (k // l)
k, l = l, k % l
return x % mod
fact = [1 for _ in range(maxf+1)]
invf = [1 for _ in range(maxf+1)]
for i in range(maxf):
fact[i+1] = (fact[i] * (i+1)) % mod
invf[-1] = inved(fact[-1])
for i in range(maxf, 0, -1):
invf[i-1] = (invf[i] * i) % mod
choice = [M, 2*M, (N+1)*M, (N+2)*M]
temper = [[0 for _ in range(4)], [0 for _ in range(4)]]
for zone in range(4):
vec1 = [0, 1]
vec2 = [2, 1]
tmp = choice[zone]
mat = [[1, 0], [0, 1]]
bas = [[0, 1], [1, 1]]
while tmp != 0:
y = [[0, 0], [0, 0]]
if tmp % 2 == 1:
for i in range(2):
for j in range(2):
for k in range(2):
y[i][j] += mat[i][k] * bas[k][j] % mod
y[i][j] %= mod
for i in range(2):
for j in range(2):
mat[i][j] = y[i][j]
for i in range(2):
for j in range(2):
y[i][j] = 0
for i in range(2):
for j in range(2):
for k in range(2):
y[i][j] += bas[i][k] * bas[k][j] % mod
y[i][j] %= mod
for i in range(2):
for j in range(2):
bas[i][j] = y[i][j]
tmp //= 2
vec1[0], vec1[1] = (mat[0][0] * vec1[0] + mat[0][1] * vec1[1]) % mod, (mat[1][0] * vec1[0] + mat[1][1] * vec1[1]) % mod
vec2[0], vec2[1] = (mat[0][0] * vec2[0] + mat[0][1] * vec2[1]) % mod, (mat[1][0] * vec2[0] + mat[1][1] * vec2[1]) % mod
temper[0][zone], temper[1][zone] = vec1[0], vec2[0]
S = (temper[0][3] - (temper[1][0] - 1) * (temper[0][2] - temper[0][0]) - temper[0][1]) % mod
S *= inved((temper[1][0] - 2 * (M%2==0))%mod)
S %= mod
print(S)
realDivineJK