結果
問題 | No.1065 電柱 / Pole (Easy) |
ユーザー | Ricky_pon |
提出日時 | 2020-05-29 21:40:33 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 242 ms / 2,000 ms |
コード長 | 15,844 bytes |
コンパイル時間 | 2,999 ms |
コンパイル使用メモリ | 234,152 KB |
実行使用メモリ | 22,476 KB |
最終ジャッジ日時 | 2024-11-06 03:00:22 |
合計ジャッジ時間 | 8,305 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 103 ms
13,184 KB |
testcase_03 | AC | 133 ms
21,448 KB |
testcase_04 | AC | 136 ms
21,540 KB |
testcase_05 | AC | 105 ms
21,496 KB |
testcase_06 | AC | 105 ms
21,688 KB |
testcase_07 | AC | 36 ms
8,320 KB |
testcase_08 | AC | 125 ms
21,716 KB |
testcase_09 | AC | 12 ms
6,820 KB |
testcase_10 | AC | 57 ms
11,648 KB |
testcase_11 | AC | 40 ms
9,088 KB |
testcase_12 | AC | 23 ms
7,040 KB |
testcase_13 | AC | 103 ms
14,440 KB |
testcase_14 | AC | 126 ms
16,828 KB |
testcase_15 | AC | 152 ms
18,544 KB |
testcase_16 | AC | 68 ms
11,452 KB |
testcase_17 | AC | 166 ms
19,728 KB |
testcase_18 | AC | 47 ms
9,088 KB |
testcase_19 | AC | 155 ms
19,132 KB |
testcase_20 | AC | 35 ms
7,680 KB |
testcase_21 | AC | 54 ms
10,624 KB |
testcase_22 | AC | 141 ms
17,660 KB |
testcase_23 | AC | 3 ms
6,816 KB |
testcase_24 | AC | 4 ms
6,816 KB |
testcase_25 | AC | 21 ms
6,816 KB |
testcase_26 | AC | 72 ms
12,460 KB |
testcase_27 | AC | 75 ms
12,296 KB |
testcase_28 | AC | 139 ms
18,096 KB |
testcase_29 | AC | 15 ms
6,820 KB |
testcase_30 | AC | 146 ms
19,628 KB |
testcase_31 | AC | 100 ms
16,036 KB |
testcase_32 | AC | 60 ms
11,192 KB |
testcase_33 | AC | 148 ms
20,416 KB |
testcase_34 | AC | 49 ms
9,344 KB |
testcase_35 | AC | 150 ms
19,932 KB |
testcase_36 | AC | 2 ms
6,820 KB |
testcase_37 | AC | 3 ms
6,816 KB |
testcase_38 | AC | 3 ms
6,816 KB |
testcase_39 | AC | 3 ms
6,816 KB |
testcase_40 | AC | 2 ms
6,816 KB |
testcase_41 | AC | 242 ms
22,476 KB |
testcase_42 | AC | 55 ms
9,216 KB |
testcase_43 | AC | 102 ms
13,420 KB |
testcase_44 | AC | 34 ms
7,040 KB |
testcase_45 | AC | 94 ms
13,184 KB |
testcase_46 | AC | 2 ms
6,816 KB |
testcase_47 | AC | 2 ms
6,820 KB |
ソースコード
#include <bits/stdc++.h> #define For(i, a, b) for(int (i)=(int)(a); (i)<(int)(b); ++(i)) #define rFor(i, a, b) for(int (i)=(int)(a)-1; (i)>=(int)(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair<int, int> pii; typedef pair<lint, lint> pll; template<class T> bool chmax(T &a, const T &b){if(a<b){a=b; return true;} return false;} template<class T> bool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;} template<class T> T div_floor(T a, T b){ if(b < 0) a *= -1, b *= -1; return a>=0 ? a/b : (a+1)/b-1; } template<class T> T div_ceil(T a, T b){ if(b < 0) a *= -1, b *= -1; return a>0 ? (a-1)/b+1 : a/b; } constexpr lint mod = 1e9+7; constexpr lint INF = mod * mod; constexpr int MAX = 500010; constexpr double eps=1e-9; constexpr double PI=3.14159265358979323846264338327950; inline int sgn(double x){ if(x<-eps) return -1; if(x>eps) return 1; return 0; } inline bool EQ(double x, double y){ return sgn(x-y)==0; } inline bool GE(double x, double y){ return sgn(x-y)==1; } inline bool LE(double x, double y){ return sgn(x-y)==-1; } inline bool GEQ(double x, double y){ return sgn(x-y)>=0; } inline bool LEQ(double x, double y){ return sgn(x-y)<=0; } struct Point{ double x, y; Point(double x=0, double y=0): x(x), y(y){} Point operator+(const Point &p){ return {x+p.x, y+p.y}; } Point operator-(const Point &p){ return {x-p.x, y-p.y}; } Point operator*(const double k){ return {k*x, k*y}; } Point operator/(const double k){ return {x/k, y/k}; } double operator*(const Point &p){ return x*p.x+y*p.y; } double operator^(const Point &p){ return x*p.y-y*p.x; } bool operator==(const Point &p){ return EQ(x, p.x) && EQ(y, p.y); } bool operator<(const Point &p) const{ if(EQ(x, p.x)) return LE(y, p.y); return LE(x, p.x); } }; using Vec=Point; using Polygon=vector<Point>; double norm(Point p){ return p.x*p.x+p.y*p.y; } double abs(Point p){ return sqrt(norm(p)); } double arg(Point p){ return atan2(p.y, p.x); } Point rot(Point p, double t){ return {p.x*cos(t)-p.y*sin(t), p.x*sin(t)+p.y*cos(t)}; } Point proj(Point a, Vec v, Point p){ double t=v*(p-a)/norm(v); return a+v*t; } Point refl(Point a, Vec v, Point p){ return proj(a, v, p)*2-p; } constexpr int CCW_COUNTER_CLOCKWISE=1; //反時計回り constexpr int CCW_CLOCKWISE=-1; //時計回り constexpr int CCW_ONLINE_BACK=-2; //一直線, C->A->B constexpr int CCW_ONLINE_FRONT=2; //一直線, A->B->C constexpr int CCW_ON_SEGMENT=0; //一直線, A->C->B inline int ccw(Point a, Point b, Point c){ Vec v=b-a, w=c-a; if(GE(v^w, 0)) return CCW_COUNTER_CLOCKWISE; if(LE(v^w, 0)) return CCW_CLOCKWISE; if(LE(v*w, 0)) return CCW_ONLINE_BACK; if(LE((a-b)*(c-b), 0)) return CCW_ONLINE_FRONT; return CCW_ON_SEGMENT; } bool isParallel(Vec v, Vec w){ return EQ(v^w, 0); } bool isOrthogonal(Vec v, Vec w){ return EQ(v*w, 0); } bool intersectSS(Point a, Point b, Point c, Point d){ return ccw(a, b, c)*ccw(a, b, d)<=0 && ccw(c, d, a)*ccw(c, d, b)<=0; } Point getCrossPointLL(Point a, Vec v, Point b, Vec w){ double t=((b-a)^w)/(v^w); return a+v*t; } double getDistanceLP(Point a, Vec v, Point p){ return abs(v^(p-a)/abs(v)); } double getDistanceSP(Point a, Point b, Point p){ if(LE((b-a)*(p-a), 0)) return abs(p-a); if(LE((a-b)*(p-b), 0)) return abs(p-b); return getDistanceLP(a, b-a, p); } double getDistanceLL(Point a, Vec v, Point b, Vec w){ if(isParallel(v, w)) return getDistanceLP(a, v, b); return 0; } double getDistanceLS(Point a, Vec v, Point c, Point d){ Point b=a+v; if(ccw(a, b, c)*ccw(a, b, d)<=0) return 0; return min(getDistanceLP(a, v, c), getDistanceLP(a, v, d)); } double getDistanceSS(Point a, Point b, Point c, Point d){ if(intersectSS(a, b, c, d)) return 0; return min({getDistanceSP(a, b, c), getDistanceSP(a, b, d), getDistanceSP(c, d, a), getDistanceSP(c, d, b)}); } double getAreaP(Polygon &p){ double ret=0; rep(i, (int)p.size()) ret+=p[i]^p[(i+1)%p.size()]/2; return abs(ret); } bool isConvex(Polygon &p){ int n=p.size(); bool flag1=false, flag2=false; rep(i, n){ int tmp=ccw(p[(i+n-1)%n], p[i], p[(i+1)%n]); if(tmp==CCW_COUNTER_CLOCKWISE){ if(flag2) return false; flag1=true; } else if(tmp==CCW_CLOCKWISE){ if(flag1) return false; flag2=true; } } return true; } Polygon convex_hull(Polygon p){ int n=p.size(); sort(p.begin(), p.end()); Polygon ch(2*n); int k=0; rep(i, n){ while(k>1 && LE((ch[k-1]-ch[k-2])^(p[i]-ch[k-1]), 0)) --k; ch[k++]=p[i]; } for(int i=n-2, t=k; i>=0; --i){ while(k>t && LE((ch[k-1]-ch[k-2])^(p[i]-ch[k-1]), 0)) --k; ch[k++]=p[i]; } ch.resize(k-1); return ch; } int intersectCC(Point c1, double r1, Point c2, double r2){ if(r1<r2){ swap(c1, c2); swap(r1, r2); } double d=abs(c1-c2), r=r1+r2; if(GE(d, r)) return 4; if(EQ(d, r)) return 3; if(EQ(d+r2, r1)) return 1; if(LE(d+r2, r1)) return 0; return 2; } bool intersectCL(Point c, double r, Point a, Vec v){ return LEQ(getDistanceLP(a, v, c), r); } bool intersectCS(Point c, double r, Point a, Point b){ return LEQ(getDistanceSP(a, b, c), r) && GEQ(max(abs(a-c), abs(b-c)), r); } Polygon getCrossPointCL(Point c, double r, Point a, Vec v){ Polygon ps; if(!intersectCL(c, r, a, v)) return ps; Point p=proj(a, v, c); double t=sqrt(max((double)0.0, (r*r-norm(p-c))/norm(v))); ps.push_back(p+v*t); if(!EQ(t, 0)) ps.push_back(p-v*t); return ps; } Polygon getCrossPointCC(Point c1, double r1, Point c2, double r2){ Polygon ps; Vec v=c2-c1, w(v.y*-1, v.x); double d=abs(v); double x=(d*d+r1*r1-r2*r2)/(2*d); double y=sqrt(max(r1*r1-x*x, (double)0.0)); ps.push_back(c1+v*x/d+w*y/d); if(intersectCC(c1, r1, c2, r2)!=2) return ps; ps.push_back(c1+v*x/d-w*y/d); return ps; } double getAreaCC(Point c1, double r1, Point c2, double r2){ int flag=intersectCC(c1, r1, c2, r2); if(flag>=3) return 0; if(flag<=1){ double r=min(r1, r2); return PI*r*r; } double d=abs(c1-c2); double ret=0; rep(i, 2) { double x=(d*d+r1*r1-r2*r2)/(2*d); double t=acos(x/r1)*2; ret+=(t-sin(t))*r1*r1/2; swap(c1, c2); swap(r1, r2); } return ret; } Polygon Tangent(Point c, double r, Point p){ Polygon ps; double d=abs(p-c); double t=acos(r/d); ps.push_back(c+rot(p-c, t)*r/d); ps.push_back(c+rot(p-c, -t)*r/d); return ps; } Polygon getCommonTangent(Point c1, double r1, Point c2, double r2){ Polygon ps; int flag=intersectCC(c1, r1,c2, r2); if(flag>=2){ double d=abs(c2-c1); double t=acos(abs(r1-r2)/d); if(LE(r1, r2)) t=PI-t; ps.push_back(c1+rot(c2-c1, t)*r1/d); ps.push_back(c1+rot(c2-c1, -t)*r1/d); } if(flag==4){ double d=abs(c2-c1); double L=d*r1/(r1+r2); double t=acos(r1/L); ps.push_back(c1+rot(c2-c1, t)*r1/d); ps.push_back(c1+rot(c2-c1, -t)*r1/d); } if(flag==3 || flag==1){ Polygon tg=getCrossPointCC(c1, r1, c2, r2); ps.push_back(tg[0]); } return ps; } Point getO(Point a, Point b, Point c){ Point M=(a+b)/2, N=(a+c)/2; Vec v={-(b-a).y, (b-a).x}, w={-(c-a).y, (c-a).x}; return getCrossPointLL(M, v, N, w); } Point getI(Point a, Point b, Point c){ double A=abs(b-c), B=abs(c-a), C=abs(a-b); return (a*A+b*B+c*C)/(A+B+C); } Point getH(Point a, Point b, Point c){ Vec v={-(c-b).y, (c-b).x}, w={-(c-a).y, (c-a).x}; return getCrossPointLL(a, v, b, w); } pair<Point, double> MinimumBoundingCircle(Polygon &p){ Point C; double r; if(p.size()==1) C=p[0], r=0; else if(p.size()==2) C=(p[0]+p[1])/2, r=abs(p[0]-C); else{ r=INF; Polygon ch=convex_hull(p); int K=ch.size(); auto check=[&](Point tc, double tr){ rep(i, K){ if(GE(abs(ch[i]-tc), tr)) return false; } return true; }; rep(i, K)For(j, i+1, K){ Point tc=(ch[i]+ch[j])/2; double tr=abs(ch[i]-tc); if(check(tc, tr) && chmin(r, tr)) C=tc; For(k, j+1, K){ int ccw_flag=ccw(ch[i], ch[j], ch[k]); if(ccw_flag!=CCW_COUNTER_CLOCKWISE && ccw_flag!=CCW_CLOCKWISE) continue; tc=getO(ch[i], ch[j], ch[k]); tr=abs(ch[i]-tc); if(check(tc, tr) && chmin(r, tr)) C=tc; } } } return {C, r}; } typedef struct UnionFindTree{ vector<int> par; UnionFindTree(int n): par(n, -1){} int find(int x){ if(par[x] < 0) return x; return par[x] = find(par[x]); } int size(int x){ return -par[find(x)]; } bool unite(int x, int y){ x = find(x); y = find(y); if(x == y) return false; if(size(x) < size(y)) swap(x, y); par[x] += par[y]; par[y] = x; return true; } bool same(int x, int y){ return find(x) == find(y); } }UF; template<typename T> struct edge{ int from, to; T cost; edge(int f, int t, T c): from(f), to(t), cost(c){} }; template<typename T> struct Graph{ vector<vector<edge<T>>> G; int n; Graph(int n_): n(n_){ G.resize(n); } void add_edge(int f, int t, T c){ G[f].emplace_back(f, t, c); } pair<bool, vector<T>> bellman_ford(int s){ T d_INF = numeric_limits<T>::max(); vector<T> d(n, d_INF); vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); d[s] = 0; rep(i, n)for(edge<T> &e: E){ if(d[e.from] != d_INF && d[e.from] + e.cost < d[e.to]){ d[e.to] = d[e.from] + e.cost; if(i == n-1) return make_pair(true, d); } } return make_pair(false, d); } vector<T> dijkstra(int s){ using P = pair<T, int>; priority_queue<P, vector<P>, greater<P>> que; vector<T> d(n, numeric_limits<T>::max()); d[s] = 0; que.push(P((T)0, s)); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(d[v] < p.first) continue; for(edge<T> &e : G[v]){ if(d[e.to] > d[v] + e.cost){ d[e.to] = d[v] + e.cost; que.push(P(d[e.to], e.to)); } } } return d; } pair<bool, vector<vector<T>>> warshall_floyd(){ T d_INF = numeric_limits<T>::max(); vector<vector<T>> d = vector<vector<T>>(n, vector<T>(n, d_INF)); rep(i, n){ for(edge<T> &e: G[i]) d[i][e.to] = e.cost; d[i][i] = 0; } rep(k, n)rep(i, n)rep(j, n)if(d[i][k] < d_INF && d[k][j] < d_INF){ d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } rep(i, n)if(d[i][i] < 0) return make_pair(true, d); return make_pair(false, d); } pair<T, Graph<T>> kruskal(){ vector<edge<T>> E; rep(i, n)for(edge<T> &e: G[i]) E.push_back(e); sort(E.begin(), E.end(), [](const edge<T> &e1, const edge<T> &e2){return e1.cost < e2.cost;}); UF uf(n); T ret = 0; Graph<T> MST(n); for(edge<T> &e: E){ if(!uf.same(e.from, e.to)){ uf.unite(e.from, e.to); ret += e.cost; MST.add_edge(e.from, e.to, e.cost); MST.add_edge(e.to, e.from, e.cost); } } return {ret, MST}; } pair<bool, vector<int>> toposo(){ vector<int> ret(n, -1), in(n, 0); rep(i, n)for(edge<T> &e: G[i]) ++in[e.to]; int cur = 0; stack<int> st; rep(i, n)if(!in[i]) st.push(i); if(st.empty()) return make_pair(false, ret); while(!st.empty()){ int v = st.top(); st.pop(); ret[cur++] = v; for(edge<T> &e: G[v]){ if(!in[e.to]) return make_pair(false, ret); --in[e.to]; if(!in[e.to]) st.push(e.to); } } return make_pair(cur==n, ret); } bool has_cycle(){ return !toposo().fi; } void scc_dfs(int v, vector<bool> &used, vector<int> &vs){ used[v] = true; for(edge<T> &e: G[v])if(!used[e.to]) scc_dfs(e.to, used, vs); vs.push_back(v); } void scc_rdfs(int v, int k, vector<int> &cmp, vector<bool> &used, vector<vector<int>> &rG){ used[v] = true; cmp[v] = k; for(int nv: rG[v])if(!used[nv]) scc_rdfs(nv, k, cmp, used, rG); } tuple<int, vector<int>, vector<vector<int>>> scc(){ vector<vector<int>> rG(n); rep(i, n)for(edge<T> &e: G[i]) rG[e.to].push_back(i); vector<bool> used(n, false); vector<int> vs; vector<int> vtoc(n); rep(i, n)if(!used[i]) scc_dfs(i, used, vs); fill(used.begin(), used.end(), false); int k = 0; vector<vector<int>> ctov=vector<vector<int>>(n, vector<int>()); rrep(i, n)if(!used[vs[i]]) scc_rdfs(vs[i], k++, vtoc, used, rG, ctov); return make_tuple(k, vtoc, ctov); } int bridge_dfs(int v, int pv, int &idx, vector<int> &ord, vector<int> &low, vector<pii> &bridge){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=pv){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], bridge_dfs(nv, v, idx, ord, low, bridge)); if(low[nv]>ord[v]) bridge.emplace_back(min(v, nv), max(v, nv)); } else chmin(low[v], ord[nv]); } return low[v]; } vector<pii> get_bridge(){ vector<int> ord(n, -1), low(n, -1); vector<pii> bridge; int idx=0; bridge_dfs(0, -1, idx, ord, low, bridge); sort(bridge.begin(), bridge.end()); bridge.erase(unique(bridge.begin(), bridge.end()), bridge.end()); return bridge; } int art_dfs(int v, int prev, int &idx, vector<int> &ord, vector<int> &low, vector<int> &art){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=prev){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], art_dfs(nv, v, idx, ord, low, art)); if((prev<0 && ord[nv]!=1) || (prev>=0 && low[nv]>=ord[v])){ art.push_back(v); } } else chmin(low[v], ord[nv]); } return low[v]; } vector<int> get_art(){ vector<int> ord(n, -1), low(n, -1), art; int idx=0; art_dfs(0, -1, idx, ord, low, art); sort(art.begin(), art.end()); art.erase(unique(art.begin(), art.end()), art.end()); return art; } }; int main(){ int n, m, X, Y; scanf("%d%d%d%d", &n, &m, &X, &Y); --X; --Y; Graph<double> gr(n); Polygon p(n); rep(i, n) scanf("%lf%lf", &p[i].x, &p[i].y); rep(i, m){ int a, b; scanf("%d%d", &a, &b); --a; --b; gr.add_edge(a, b, abs(p[a]-p[b])); gr.add_edge(b, a, abs(p[a]-p[b])); } auto d = gr.dijkstra(X); printf("%.10lf\n", d[Y]); }