結果

問題 No.1066 #いろいろな色 / Red and Blue and more various colors (Easy)
ユーザー masayoshi361masayoshi361
提出日時 2020-05-29 21:47:42
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 18,184 bytes
コンパイル時間 3,125 ms
コンパイル使用メモリ 234,276 KB
実行使用メモリ 10,764 KB
最終ジャッジ日時 2024-11-06 03:33:33
合計ジャッジ時間 8,131 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,760 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,820 KB
testcase_04 AC 2 ms
6,816 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 2 ms
6,816 KB
testcase_08 AC 1,449 ms
6,820 KB
testcase_09 AC 2 ms
6,820 KB
testcase_10 TLE -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

//header
#ifdef LOCAL
    #include "cxx-prettyprint-master/prettyprint.hpp"
    #define debug(x) cout << x << endl
#else
    #define debug(...) 42
#endif
    #pragma GCC optimize("Ofast")
    #include <bits/stdc++.h>
    //types
    using namespace std;
    using ll = long long;
    using ul = unsigned long long;
    using ld = long double;
    typedef pair < ll , ll > Pl;        
    typedef pair < int, int > Pi;
    typedef vector<ll> vl;
    typedef vector<int> vi;
    template< typename T >
    using mat = vector< vector< T > >;
    template< int mod >
    struct modint {
        int x;

        modint() : x(0) {}

        modint(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

        modint &operator+=(const modint &p) {
            if((x += p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator-=(const modint &p) {
            if((x += mod - p.x) >= mod) x -= mod;
            return *this;
        }

        modint &operator*=(const modint &p) {
            x = (int) (1LL * x * p.x % mod);
            return *this;
        }

        modint &operator/=(const modint &p) {
            *this *= p.inverse();
            return *this;
        }

        modint operator-() const { return modint(-x); }

        modint operator+(const modint &p) const { return modint(*this) += p; }

        modint operator-(const modint &p) const { return modint(*this) -= p; }

        modint operator*(const modint &p) const { return modint(*this) *= p; }

        modint operator/(const modint &p) const { return modint(*this) /= p; }

        bool operator==(const modint &p) const { return x == p.x; }

        bool operator!=(const modint &p) const { return x != p.x; }

        modint inverse() const {
            int a = x, b = mod, u = 1, v = 0, t;
            while(b > 0) {
            t = a / b;
            swap(a -= t * b, b);
            swap(u -= t * v, v);
            }
            return modint(u);
        }

        modint pow(int64_t n) const {
            modint ret(1), mul(x);
            while(n > 0) {
            if(n & 1) ret *= mul;
            mul *= mul;
            n >>= 1;
            }
            return ret;
        }

        friend ostream &operator<<(ostream &os, const modint &p) {
            return os << p.x;
        }

        friend istream &operator>>(istream &is, modint &a) {
            int64_t t;
            is >> t;
            a = modint< mod >(t);
            return (is);
        }

        static int get_mod() { return mod; }
    };
    //abreviations
    #define all(x) (x).begin(), (x).end()
    #define rall(x) (x).rbegin(), (x).rend()
    #define rep_(i, a_, b_, a, b, ...) for (int i = (a), max_i = (b); i < max_i; i++)
    #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define rrep_(i, a_, b_, a, b, ...) for (int i = (b-1), min_i = (a); i >= min_i; i--)
    #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
    #define SZ(x) ((int)(x).size())
    #define pb(x) push_back(x)
    #define eb(x) emplace_back(x)
    #define mp make_pair
    #define print(x) cout << x << endl
    #define vsum(x) accumulate(x, 0LL)
    #define vmax(a) *max_element(all(a))
    #define vmin(a) *min_element(all(a))
    //functions
    ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; }
    ll lcm(ll a, ll b) { return a/gcd(a, b)*b;}
    template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
    template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
    template< typename T >
    T mypow(T x, ll n) {
        T ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
        }
        return ret;
    }
    ll modpow(ll x, ll n, const ll mod) {
        ll ret = 1;
        while(n > 0) {
            if(n & 1) (ret *= x);
            (x *= x);
            n >>= 1;
            x%=mod;
            ret%=mod;
        }
        return ret;
    }
    uint64_t my_rand(void) {
        static uint64_t x = 88172645463325252ULL;
        x = x ^ (x << 13); x = x ^ (x >> 7);
        return x = x ^ (x << 17);
    }
    //graph template
    template< typename T >
    struct edge {
        int src, to;
        T cost;

        edge(int to, T cost) : src(-1), to(to), cost(cost) {}

        edge(int src, int to, T cost) : src(src), to(to), cost(cost) {}

        edge &operator=(const int &x) {
            to = x;
            return *this;
        }
        operator int() const { return to; }
    };
    template< typename T >
    using Edges = vector< edge< T > >;
    template< typename T >
    using WeightedGraph = vector< Edges< T > >;
    using UnWeightedGraph = vector< vector< int > >;

//constant
#define INF 4001002003004005006LL
#define inf 1000000005
#define mod 998244353LL
#define endl '\n'
typedef modint<mod> mint;
const long double eps = 0.001;
const long double PI  = 3.141592653589793;
namespace FastFourierTransform {
    using real = double;

    struct C {
        real x, y;

        C() : x(0), y(0) {}

        C(real x, real y) : x(x), y(y) {}

        inline C operator+(const C &c) const { return C(x + c.x, y + c.y); }

        inline C operator-(const C &c) const { return C(x - c.x, y - c.y); }

        inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); }

        inline C conj() const { return C(x, -y); }
    };

    const real PI = acosl(-1);
    int base = 1;
    vector< C > rts = { {0, 0},
                                        {1, 0} };
    vector< int > rev = {0, 1};


    void ensure_base(int nbase) {
        if(nbase <= base) return;
        rev.resize(1 << nbase);
        rts.resize(1 << nbase);
        for(int i = 0; i < (1 << nbase); i++) {
            rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1));
        }
        while(base < nbase) {
            real angle = PI * 2.0 / (1 << (base + 1));
            for(int i = 1 << (base - 1); i < (1 << base); i++) {
                rts[i << 1] = rts[i];
                real angle_i = angle * (2 * i + 1 - (1 << base));
                rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i));
            }
            ++base;
        }
    }

    void fft(vector< C > &a, int n) {
        assert((n & (n - 1)) == 0);
        int zeros = __builtin_ctz(n);
        ensure_base(zeros);
        int shift = base - zeros;
        for(int i = 0; i < n; i++) {
            if(i < (rev[i] >> shift)) {
                swap(a[i], a[rev[i] >> shift]);
            }
        }
        for(int k = 1; k < n; k <<= 1) {
            for(int i = 0; i < n; i += 2 * k) {
                for(int j = 0; j < k; j++) {
                    C z = a[i + j + k] * rts[j + k];
                    a[i + j + k] = a[i + j] - z;
                    a[i + j] = a[i + j] + z;
                }
            }
        }
    }

    vector< int64_t > multiply(const vector< int > &a, const vector< int > &b) {
        int need = (int) a.size() + (int) b.size() - 1;
        int nbase = 1;
        while((1 << nbase) < need) nbase++;
        ensure_base(nbase);
        int sz = 1 << nbase;
        vector< C > fa(sz);
        for(int i = 0; i < sz; i++) {
            int x = (i < (int) a.size() ? a[i] : 0);
            int y = (i < (int) b.size() ? b[i] : 0);
            fa[i] = C(x, y);
        }
        fft(fa, sz);
        C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0);
        for(int i = 0; i <= (sz >> 1); i++) {
            int j = (sz - i) & (sz - 1);
            C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r;
            fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r;
            fa[i] = z;
        }
        for(int i = 0; i < (sz >> 1); i++) {
            C A0 = (fa[i] + fa[i + (sz >> 1)]) * t;
            C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i];
            fa[i] = A0 + A1 * s;
        }
        fft(fa, sz >> 1);
        vector< int64_t > ret(need);
        for(int i = 0; i < need; i++) {
            ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x);
        }
        return ret;
    }
};
template< typename T >
struct ArbitraryModConvolution {
    using real = FastFourierTransform::real;
    using C = FastFourierTransform::C;

    ArbitraryModConvolution() = default;

    vector< T > multiply(const vector< T > &a, const vector< T > &b, int need = -1) {
        if(need == -1) need = a.size() + b.size() - 1;
        int nbase = 0;
        while((1 << nbase) < need) nbase++;
        FastFourierTransform::ensure_base(nbase);
        int sz = 1 << nbase;
        vector< C > fa(sz);
        for(int i = 0; i < a.size(); i++) {
            fa[i] = C(a[i].x & ((1 << 15) - 1), a[i].x >> 15);
        }
        fft(fa, sz);
        vector< C > fb(sz);
        if(a == b) {
            fb = fa;
        } else {
            for(int i = 0; i < b.size(); i++) {
                fb[i] = C(b[i].x & ((1 << 15) - 1), b[i].x >> 15);
            }
            fft(fb, sz);
        }
        real ratio = 0.25 / sz;
        C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1);
        for(int i = 0; i <= (sz >> 1); i++) {
            int j = (sz - i) & (sz - 1);
            C a1 = (fa[i] + fa[j].conj());
            C a2 = (fa[i] - fa[j].conj()) * r2;
            C b1 = (fb[i] + fb[j].conj()) * r3;
            C b2 = (fb[i] - fb[j].conj()) * r4;
            if(i != j) {
                C c1 = (fa[j] + fa[i].conj());
                C c2 = (fa[j] - fa[i].conj()) * r2;
                C d1 = (fb[j] + fb[i].conj()) * r3;
                C d2 = (fb[j] - fb[i].conj()) * r4;
                fa[i] = c1 * d1 + c2 * d2 * r5;
                fb[i] = c1 * d2 + c2 * d1;
            }
            fa[j] = a1 * b1 + a2 * b2 * r5;
            fb[j] = a1 * b2 + a2 * b1;
        }
        fft(fa, sz);
        fft(fb, sz);
        vector< T > ret(need);
        for(int i = 0; i < need; i++) {
            int64_t aa = llround(fa[i].x);
            int64_t bb = llround(fb[i].x);
            int64_t cc = llround(fa[i].y);
            aa = T(aa).x, bb = T(bb).x, cc = T(cc).x;
            ret[i] = aa + (bb << 15) + (cc << 30);
        }
        return ret;
    }
};
template< typename T >
struct FormalPowerSeries : vector< T > {
    using vector< T >::vector;
    using P = FormalPowerSeries;

    using MULT = function< P(P, P) >;

    static MULT &get_mult() {
        static MULT mult = nullptr;
        return mult;
    }

    static void set_fft(MULT f) {
        get_mult() = f;
    }

    void shrink() {
        while(this->size() && this->back() == T(0)) this->pop_back();
    }

    P operator+(const P &r) const { return P(*this) += r; }

    P operator+(const T &v) const { return P(*this) += v; }

    P operator-(const P &r) const { return P(*this) -= r; }

    P operator-(const T &v) const { return P(*this) -= v; }

    P operator*(const P &r) const { return P(*this) *= r; }

    P operator*(const T &v) const { return P(*this) *= v; }

    P operator/(const P &r) const { return P(*this) /= r; }

    P operator%(const P &r) const { return P(*this) %= r; }

    P &operator+=(const P &r) {
        if(r.size() > this->size()) this->resize(r.size());
        for(int i = 0; i < r.size(); i++) (*this)[i] += r[i];
        return *this;
    }

    P &operator+=(const T &r) {
        if(this->empty()) this->resize(1);
        (*this)[0] += r;
        return *this;
    }

    P &operator-=(const P &r) {
        if(r.size() > this->size()) this->resize(r.size());
        for(int i = 0; i < r.size(); i++) (*this)[i] -= r[i];
        shrink();
        return *this;
    }

    P &operator-=(const T &r) {
        if(this->empty()) this->resize(1);
        (*this)[0] -= r;
        shrink();
        return *this;
    }

    P &operator*=(const T &v) {
        const int n = (int) this->size();
        for(int k = 0; k < n; k++) (*this)[k] *= v;
        return *this;
    }

    P &operator*=(const P &r) {
        if(this->empty() || r.empty()) {
            this->clear();
            return *this;
        }
        assert(get_mult() != nullptr);
        return *this = get_mult()(*this, r);
    }

    P &operator%=(const P &r) {
        return *this -= *this / r * r;
    }

    P operator-() const {
        P ret(this->size());
        for(int i = 0; i < this->size(); i++) ret[i] = -(*this)[i];
        return ret;
    }

    P &operator/=(const P &r) {
        if(this->size() < r.size()) {
            this->clear();
            return *this;
        }
        int n = this->size() - r.size() + 1;
        return *this = (rev().pre(n) * r.rev().inv(n)).pre(n).rev(n);
    }

    P pre(int sz) const {
        return P(begin(*this), begin(*this) + min((int) this->size(), sz));
    }

    P operator>>(int sz) const {
        if(this->size() <= sz) return {};
        P ret(*this);
        ret.erase(ret.begin(), ret.begin() + sz);
        return ret;
    }

    P operator<<(int sz) const {
        P ret(*this);
        ret.insert(ret.begin(), sz, T(0));
        return ret;
    }

    P rev(int deg = -1) const {
        P ret(*this);
        if(deg != -1) ret.resize(deg, T(0));
        reverse(begin(ret), end(ret));
        return ret;
    }

    P diff() const {
        const int n = (int) this->size();
        P ret(max(0, n - 1));
        for(int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * T(i);
        return ret;
    }

    P integral() const {
        const int n = (int) this->size();
        P ret(n + 1);
        ret[0] = T(0);
        for(int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / T(i + 1);
        return ret;
    }

    // F(0) must not be 0
    P inv(int deg = -1) const {
        assert(((*this)[0]) != T(0));
        const int n = (int) this->size();
        if(deg == -1) deg = n;
        P ret({T(1) / (*this)[0]});
        for(int i = 1; i < deg; i <<= 1) {
            ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
        }
        return ret.pre(deg);
    }

    // F(0) must be 1
    P log(int deg = -1) const {
        assert((*this)[0] == 1);
        const int n = (int) this->size();
        if(deg == -1) deg = n;
        return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
    }

    P sqrt(int deg = -1) const {
        const int n = (int) this->size();
        if(deg == -1) deg = n;

        if((*this)[0] == T(0)) {
            for(int i = 1; i < n; i++) {
                if((*this)[i] != T(0)) {
                    if(i & 1) return {};
                    if(deg - i / 2 <= 0) break;
                    auto ret = (*this >> i).sqrt(deg - i / 2) << (i / 2);
                    if(ret.size() < deg) ret.resize(deg, T(0));
                    return ret;
                }
            }
            return P(deg, 0);
        }

        P ret({T(1)});
        T inv2 = T(1) / T(2);
        for(int i = 1; i < deg; i <<= 1) {
            ret = (ret + pre(i << 1) * ret.inv(i << 1)) * inv2;
        }
        return ret.pre(deg);
    }

    // F(0) must be 0
    P exp(int deg = -1) const {
        assert((*this)[0] == T(0));
        const int n = (int) this->size();
        if(deg == -1) deg = n;
        P ret({T(1)});
        for(int i = 1; i < deg; i <<= 1) {
            ret = (ret * (pre(i << 1) + T(1) - ret.log(i << 1))).pre(i << 1);
        }
        return ret.pre(deg);
    }

    P pow(int64_t k, int deg = -1) const {
        const int n = (int) this->size();
        if(deg == -1) deg = n;
        for(int i = 0; i < n; i++) {
            if((*this)[i] != T(0)) {
                T rev = T(1) / (*this)[i];
                P C(*this * rev);
                P D(n - i);
                for(int j = i; j < n; j++) D[j - i] = C[j];
                D = (D.log() * k).exp() * (*this)[i].pow(k);
                P E(deg);
                if(i * k > deg) return E;
                auto S = i * k;
                for(int j = 0; j + S < deg && j < D.size(); j++) E[j + S] = D[j];
                return E;
            }
        }
        return *this;
    }


    T eval(T x) const {
        T r = 0, w = 1;
        for(auto &v : *this) {
            r += w * v;
            w *= x;
        }
        return r;
    }
};
/* how to use
// you can use ntt instead.
ArbitraryModConvolution<mint> arb;
using FPS = FormalPowerSeries< mint >;
auto mult = [&](const FPS::P &a, const FPS::P &b) {
        auto ret = arb.multiply(a, b);
        return FPS::P(ret.begin(), ret.end());
};
FPS::set_fft(mult);
//example
FormalPowerSeries< mint > X(K + 1);
*/
//library
template< typename T >
struct SqrtDecomposition{
    //change sqrtN with 1 for debug
    const int sqrtN = 512;
    int N, K;
    //write here
    vector<T> data;
    vector<T> bucket;
    SqrtDecomposition(int n) : N(n){
        K = (N+sqrtN-1)/sqrtN;
        data.assign(K*sqrtN, 0);
        bucket.assign(K, 0);
    }
    void update(int x, int y, T v){
        //seperate y-x<sqrtN
        if(y-x<2*sqrtN){
        }
        int l = (x+sqrtN-1)/sqrtN;
        int r = y/sqrtN;
        //left
        rep(i, x, l*sqrtN){
        }
        //center
        rep(i, l, r){
        }
        //right
        rep(i, r*sqrtN, y){
        }
    }
    T query(int x, int y){
        //write here
        if(y-x<2*sqrtN){
        }
        int l = (x+sqrtN-1)/sqrtN;
        int r = y/sqrtN;
        rep(i, x, l*sqrtN){
            
        }
        rep(i, l, r){
            
        }
        rep(i, r*sqrtN, y){
            
        }
        return;
    }
};
int main(){
    cin.tie(0);
    ios::sync_with_stdio(0);
    cout << setprecision(20);
    ArbitraryModConvolution<mint> arb;
    using FPS = FormalPowerSeries< mint >;
    auto mult = [&](const FPS::P &a, const FPS::P &b) {
            auto ret = arb.multiply(a, b);
            return FPS::P(ret.begin(), ret.end());
    };
    FPS::set_fft(mult);
    int n, q; cin>>n>>q;
    vector<mint> a(n);
    rep(i, n)cin>>a[i];
    FormalPowerSeries<mint> F(n+1);
    F[0] = 1;
    mint res=1;
    rep(i, n)res*=a[i];
    rep(i, n){
        FormalPowerSeries<mint> g(2);
        g[1] = (mint)1/(mint)a[i];
        g[0] = (mint)1-g[1];
        F*=g;
        F.resize(n+1);
    }
    rep(_, q){
        int b; cin>>b;
        cout << F[b]*res << endl;
    }
} 
0