結果
問題 | No.1066 #いろいろな色 / Red and Blue and more various colors (Easy) |
ユーザー | kuhaku |
提出日時 | 2020-05-29 22:10:10 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 3,106 bytes |
コンパイル時間 | 2,036 ms |
コンパイル使用メモリ | 206,496 KB |
実行使用メモリ | 316,184 KB |
最終ジャッジ日時 | 2024-11-06 05:03:52 |
合計ジャッジ時間 | 5,191 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 31 ms
34,572 KB |
testcase_01 | AC | 30 ms
34,560 KB |
testcase_02 | AC | 32 ms
34,628 KB |
testcase_03 | AC | 31 ms
34,552 KB |
testcase_04 | AC | 32 ms
34,484 KB |
testcase_05 | AC | 31 ms
34,532 KB |
testcase_06 | AC | 32 ms
34,588 KB |
testcase_07 | AC | 32 ms
34,488 KB |
testcase_08 | MLE | - |
testcase_09 | AC | 31 ms
36,716 KB |
testcase_10 | MLE | - |
testcase_11 | MLE | - |
testcase_12 | MLE | - |
testcase_13 | MLE | - |
testcase_14 | MLE | - |
testcase_15 | MLE | - |
testcase_16 | AC | 60 ms
117,140 KB |
testcase_17 | AC | 63 ms
124,692 KB |
testcase_18 | MLE | - |
testcase_19 | MLE | - |
testcase_20 | AC | 33 ms
38,824 KB |
testcase_21 | MLE | - |
testcase_22 | AC | 32 ms
38,640 KB |
testcase_23 | AC | 32 ms
34,560 KB |
testcase_24 | AC | 32 ms
34,452 KB |
testcase_25 | MLE | - |
testcase_26 | MLE | - |
ソースコード
/* confirm 0LL and 1LL confirm cornercases such as 0 confirm times of cin < 10^6 */ #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using P = pair<ll, ll>; using Pld = pair<ld, ld>; using Vec = vector<ll>; using VecP = vector<P>; using VecB = vector<bool>; using VecC = vector<char>; using VecD = vector<ld>; using VecS = vector<string>; using Graph = vector<VecP>; template <typename T> using Vec1 = vector<T>; template <typename T> using Vec2 = vector<Vec1<T> >; #define REP(i, m, n) for(ll i = (m); (i) < (n); ++(i)) #define REPN(i, m, n) for(ll i = (m); (i) <= (n); ++(i)) #define REPR(i, m, n) for(ll i = (m)-1; (i) >= (n); --(i)) #define REPNR(i, m, n) for(ll i = (m); (i) >= (n); --(i)) #define rep(i, n) REP(i, 0, n) #define repn(i, n) REPN(i, 1, n) #define repr(i, n) REPR(i, n, 0) #define repnr(i, n) REPNR(i, n, 1) #define all(s) (s).begin(), (s).end() #define pb push_back #define fs first #define sc second template <typename T> bool chmax(T &a, const T b){if(a < b){a = b; return true;} return false;} template <typename T> bool chmin(T &a, const T b){if(a > b){a = b; return true;} return false;} template <typename T> ll pow2(const T n){return (1LL << n);} template <typename T> void cosp(const T n){cout << n << ' ';} void co(void){cout << '\n';} template <typename T> void co(const T n){cout << n << '\n';} template <typename T1, typename T2> void co(pair<T1, T2> p){cout << p.fs << ' ' << p.sc << '\n';} template <typename T> void co(const Vec1<T> &v){for(T i : v) cosp(i); co();} template <typename T> void co(initializer_list<T> v){for(T i : v) cosp(i); co();} template <typename T> void ce(const T n){cerr << n << endl;} void sonic(){ios::sync_with_stdio(false); cin.tie(0);} void setp(const ll n){cout << fixed << setprecision(n);} constexpr int INF = 1e9+1; constexpr ll LINF = 1e18+1; // constexpr ll MOD = 1e9+7; constexpr ll MOD = 998244353; constexpr ld EPS = 1e-11; const ld PI = acos(-1); Vec fac, finv; ll PowMod(ll a, ll n){ if(n < 0) return PowMod(PowMod(a, -n), MOD-2); if(n == 0) return 1; if(n == 1) return a; if(n%2 == 0) return PowMod(a*a%MOD, n/2); return a*PowMod(a*a%MOD, n/2)%MOD; } ll inv(ll n){ return PowMod(n, MOD - 2); } void init(ll n = 2e6){ fac.resize(n+1); fac[0] = 1; repn(i, n) fac[i] = fac[i-1]*i%MOD; finv.resize(n+1); finv[n] = PowMod(fac[n], MOD-2); repr(i, n) finv[i] = finv[i+1]*(i+1)%MOD; finv[0] = 1; } ll combi(ll n, ll k){ return fac[n]*finv[k]%MOD*finv[n-k]%MOD; } ll dp[6005][6005] = {}; int main(void){ ll n, q; cin >> n >> q; Vec a(n); rep(i, n) cin >> a[i]; rep(i, n) --a[i]; Vec b(q); rep(i, q) cin >> b[i]; init(); rep(i, n) dp[0][i] = a[i]; repr(i, n - 1) dp[0][i] += dp[0][i + 1]; rep(i, n) dp[0][i] %= MOD; repn(i, n){ rep(j, n) dp[i][j] = (dp[i - 1][j + 1] * a[j]) % MOD; repr(j, n - 1) dp[i][j] += dp[i][j + 1]; rep(j, n) dp[i][j] %= MOD; } rep(i, q){ if(b[i] == n) co(1); else co(dp[n - b[i] - 1][0]); } return 0; }