結果

問題 No.1069 電柱 / Pole (Hard)
ユーザー hitonanodehitonanode
提出日時 2020-05-29 23:21:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 9,219 bytes
コンパイル時間 3,304 ms
コンパイル使用メモリ 242,004 KB
実行使用メモリ 13,768 KB
最終ジャッジ日時 2024-11-06 12:12:44
合計ジャッジ時間 6,923 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
13,768 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 TLE -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
testcase_59 -- -
testcase_60 -- -
testcase_61 -- -
testcase_62 -- -
testcase_63 -- -
testcase_64 -- -
testcase_65 -- -
testcase_66 -- -
testcase_67 -- -
testcase_68 -- -
testcase_69 -- -
testcase_70 -- -
testcase_71 -- -
testcase_72 -- -
testcase_73 -- -
testcase_74 -- -
testcase_75 -- -
testcase_76 -- -
testcase_77 -- -
testcase_78 -- -
testcase_79 -- -
testcase_80 -- -
testcase_81 -- -
testcase_82 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(6); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/

template<typename T>
struct ShortestPath
{
    int V, E;
    int INVALID = -1;
    std::vector<std::vector<std::pair<int, T>>> to;
    ShortestPath() = default;
    ShortestPath(int V) : V(V), E(0), to(V) {}
    void add_edge(int s, int t, T len) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, len);
        E++;
    }

    std::vector<T> dist;
    std::vector<int> prev;
    // Dijkstra algorithm
    // Complexity: O(E log E)
    void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, 1e18);
        dist[s] = 0;
        prev.assign(V, INVALID);
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while(!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, std::numeric_limits<T>::max());
        dist[s] = 0;
        prev.assign(V, INVALID);
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == std::numeric_limits<T>::max()) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) {
                        dist[nx.first] = dnx, prev[nx.first] = v;
                        upd = true;
                    }
                }
            }
            if (!upd) return true;
        }
        return false;
    }
    // Warshall-Floyd algorithm
    // Complexity: O(E + V^3)
    std::vector<std::vector<T>> dist2d;
    void WarshallFloyd() {
        dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max()));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second);
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] = std::numeric_limits<T>::max()) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] = std::numeric_limits<T>::max()) continue;
                    dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
    }
};

using BS = bitset<16>;
int serial;
struct P_
{
    double first;
    BS second;
    BS third;
    int id_;
    P_() = default;
    P_(double a, BS b, BS path) : first(a), second(b), third(path), id_(serial++) {}
    // bool operator<(const P_ &x) const { return first < x.first; }
    bool operator>(const P_ &x) const {
        if (first != x.first) return first > x.first;
        return id_ > x.id_;
    }
};

int main()
{
    int N, M, K;
    int X, Y;
    cin >> N >> M >> K >> X >> Y;
    X--, Y--;
    vector<lint> P(N), Q(N);
    REP(i, N) cin >> P[i] >> Q[i];
    vector<double> e(M * 2);
    vector<int> from(M * 2), to(M * 2);

    ShortestPath<double> graph(N);

    map<pint, int> e2id;
    REP(i, M)
    {
        int s, t;
        cin >> s >> t;
        s--, t--;
        double dx = P[s] - P[t];
        double dy = Q[s] - Q[t];
        e[i] = e[i + M] = sqrt(dx * dx + dy * dy);
        from[i] = to[i + M] = s;
        from[i + M] = to[i] = t;
        graph.add_edge(s, t, e[i]);
        graph.add_edge(t, s, e[i]);
        e2id[pint(s, t)] = i;
        e2id[pint(t, s)] = i + M;
    }
    graph.Dijkstra(X);
    BS path;
    path.reset();
    int now = Y;
    while (now != X)
    {
        int prv = graph.prev[now];
        path[e2id[pint(prv, now)]] = 1;
        now = prv;
    }
    vector<BS> checked;
    priority_queue<P_, vector<P_>, greater<P_>> pq;
    vector<BS> alivebs;
    vector<BS> pathbs;
    vector<double> ret;

    BS state_;
    REP(i, M * 2) state_[i] = 1;
    checked.emplace_back(state_);
    alivebs.emplace_back(state_);
    pathbs.emplace_back(path);
    ret.emplace_back(graph.dist[Y]);

    while (ret.size() < K)
    {
        REP(eban, M * 2) if (pathbs.back()[eban])
        {
            BS b = alivebs.back();
            b[eban] = 0;
            ShortestPath<double> graph(N);
            REP(i, M * 2) if (b[i])
            {
                graph.add_edge(from[i], to[i], e[i]);
            }
            graph.Dijkstra(X);
            if (graph.dist[Y] > 1e16) continue;
            BS path;
            int now = Y;
            while (now != X)
            {
                int prv = graph.prev[now];
                path[e2id[pint(prv, now)]] = 1;
                now = prv;
            }
            pq.emplace(graph.dist[Y], b, path);
        }

        bool flg_conti = true;
        while (true)
        {
            if (pq.empty())
            {
                flg_conti = false;
                break;
            }
            bool bad = false;
            for (auto x : pathbs)
            {
                if (x == pq.top().third) bad = true;
            }
            if (!bad)
            {
                ret.emplace_back(pq.top().first);
            }
            alivebs.emplace_back(pq.top().second);
            pathbs.emplace_back(pq.top().third);
            pq.pop();
            break;
        }
        if (!flg_conti) break;
    }

    if (ret.size() < K) ret.resize(K, -1);
    REP(i, K)
    {
        if (ret[i] >= 0) cout << ret[i] << '\n';
        else cout << -1 << '\n';
    }
}
0