結果

問題 No.1069 電柱 / Pole (Hard)
ユーザー hitonanodehitonanode
提出日時 2020-05-29 23:21:52
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 777 ms / 2,000 ms
コード長 9,223 bytes
コンパイル時間 3,129 ms
コンパイル使用メモリ 243,220 KB
実行使用メモリ 9,184 KB
最終ジャッジ日時 2024-07-23 15:07:28
合計ジャッジ時間 12,202 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,944 KB
testcase_03 AC 2 ms
6,940 KB
testcase_04 AC 551 ms
7,960 KB
testcase_05 AC 777 ms
8,512 KB
testcase_06 AC 73 ms
6,940 KB
testcase_07 AC 19 ms
6,944 KB
testcase_08 AC 521 ms
6,944 KB
testcase_09 AC 63 ms
6,944 KB
testcase_10 AC 19 ms
6,944 KB
testcase_11 AC 3 ms
6,940 KB
testcase_12 AC 5 ms
6,944 KB
testcase_13 AC 24 ms
6,944 KB
testcase_14 AC 12 ms
6,944 KB
testcase_15 AC 526 ms
9,184 KB
testcase_16 AC 154 ms
6,940 KB
testcase_17 AC 18 ms
6,940 KB
testcase_18 AC 164 ms
6,940 KB
testcase_19 AC 397 ms
6,940 KB
testcase_20 AC 19 ms
6,944 KB
testcase_21 AC 17 ms
6,940 KB
testcase_22 AC 7 ms
6,944 KB
testcase_23 AC 54 ms
6,944 KB
testcase_24 AC 466 ms
6,940 KB
testcase_25 AC 445 ms
6,944 KB
testcase_26 AC 392 ms
6,940 KB
testcase_27 AC 392 ms
6,944 KB
testcase_28 AC 392 ms
6,944 KB
testcase_29 AC 4 ms
6,944 KB
testcase_30 AC 3 ms
6,944 KB
testcase_31 AC 2 ms
6,944 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 AC 2 ms
6,940 KB
testcase_34 AC 2 ms
6,940 KB
testcase_35 AC 2 ms
6,944 KB
testcase_36 AC 2 ms
6,940 KB
testcase_37 AC 59 ms
6,940 KB
testcase_38 AC 9 ms
6,940 KB
testcase_39 AC 3 ms
6,940 KB
testcase_40 AC 72 ms
6,944 KB
testcase_41 AC 49 ms
6,940 KB
testcase_42 AC 79 ms
6,944 KB
testcase_43 AC 5 ms
6,940 KB
testcase_44 AC 55 ms
6,944 KB
testcase_45 AC 33 ms
6,940 KB
testcase_46 AC 221 ms
6,940 KB
testcase_47 AC 134 ms
6,944 KB
testcase_48 AC 127 ms
6,940 KB
testcase_49 AC 35 ms
6,940 KB
testcase_50 AC 4 ms
6,940 KB
testcase_51 AC 226 ms
6,944 KB
testcase_52 AC 3 ms
6,940 KB
testcase_53 AC 43 ms
6,940 KB
testcase_54 AC 2 ms
6,940 KB
testcase_55 AC 3 ms
6,944 KB
testcase_56 AC 2 ms
6,940 KB
testcase_57 AC 4 ms
6,944 KB
testcase_58 AC 2 ms
6,944 KB
testcase_59 AC 3 ms
6,940 KB
testcase_60 AC 2 ms
6,944 KB
testcase_61 AC 8 ms
6,940 KB
testcase_62 AC 2 ms
6,940 KB
testcase_63 AC 2 ms
6,940 KB
testcase_64 AC 5 ms
6,940 KB
testcase_65 AC 2 ms
6,944 KB
testcase_66 AC 2 ms
6,944 KB
testcase_67 AC 2 ms
6,944 KB
testcase_68 AC 2 ms
6,940 KB
testcase_69 AC 12 ms
6,940 KB
testcase_70 AC 4 ms
6,944 KB
testcase_71 AC 9 ms
6,944 KB
testcase_72 AC 6 ms
6,940 KB
testcase_73 AC 11 ms
6,944 KB
testcase_74 AC 13 ms
6,940 KB
testcase_75 AC 13 ms
6,944 KB
testcase_76 AC 70 ms
6,944 KB
testcase_77 AC 70 ms
6,940 KB
testcase_78 AC 8 ms
6,940 KB
testcase_79 AC 20 ms
6,944 KB
testcase_80 AC 49 ms
6,940 KB
testcase_81 AC 65 ms
6,940 KB
testcase_82 AC 17 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(6); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/

template<typename T>
struct ShortestPath
{
    int V, E;
    int INVALID = -1;
    std::vector<std::vector<std::pair<int, T>>> to;
    ShortestPath() = default;
    ShortestPath(int V) : V(V), E(0), to(V) {}
    void add_edge(int s, int t, T len) {
        assert(0 <= s and s < V);
        assert(0 <= t and t < V);
        to[s].emplace_back(t, len);
        E++;
    }

    std::vector<T> dist;
    std::vector<int> prev;
    // Dijkstra algorithm
    // Complexity: O(E log E)
    void Dijkstra(int s) {
        assert(0 <= s and s < V);
        dist.assign(V, 1e18);
        dist[s] = 0;
        prev.assign(V, INVALID);
        using P = std::pair<T, int>;
        std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
        pq.emplace(0, s);
        while(!pq.empty()) {
            T d;
            int v;
            std::tie(d, v) = pq.top();
            pq.pop();
            if (dist[v] < d) continue;
            for (auto nx : to[v]) {
                T dnx = d + nx.second;
                if (dist[nx.first] > dnx) {
                    dist[nx.first] = dnx, prev[nx.first] = v;
                    pq.emplace(dnx, nx.first);
                }
            }
        }
    }

    // Bellman-Ford algorithm
    // Complexity: O(VE)
    bool BellmanFord(int s, int nb_loop) {
        assert(0 <= s and s < V);
        dist.assign(V, std::numeric_limits<T>::max());
        dist[s] = 0;
        prev.assign(V, INVALID);
        for (int l = 0; l < nb_loop; l++) {
            bool upd = false;
            for (int v = 0; v < V; v++) {
                if (dist[v] == std::numeric_limits<T>::max()) continue;
                for (auto nx : to[v]) {
                    T dnx = dist[v] + nx.second;
                    if (dist[nx.first] > dnx) {
                        dist[nx.first] = dnx, prev[nx.first] = v;
                        upd = true;
                    }
                }
            }
            if (!upd) return true;
        }
        return false;
    }
    // Warshall-Floyd algorithm
    // Complexity: O(E + V^3)
    std::vector<std::vector<T>> dist2d;
    void WarshallFloyd() {
        dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max()));
        for (int i = 0; i < V; i++) {
            dist2d[i][i] = 0;
            for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second);
        }
        for (int k = 0; k < V; k++) {
            for (int i = 0; i < V; i++) {
                if (dist2d[i][k] = std::numeric_limits<T>::max()) continue;
                for (int j = 0; j < V; j++) {
                    if (dist2d[k][j] = std::numeric_limits<T>::max()) continue;
                    dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
                }
            }
        }
    }
};

using BS = bitset<4000>;
int serial;
struct P_
{
    double first;
    BS second;
    BS third;
    int id_;
    P_() = default;
    P_(double a, BS b, BS path) : first(a), second(b), third(path), id_(serial++) {}
    // bool operator<(const P_ &x) const { return first < x.first; }
    bool operator>(const P_ &x) const {
        if (first != x.first) return first > x.first;
        return id_ > x.id_;
    }
};



int main()
{
    int N, M, K;
    int X, Y;
    cin >> N >> M >> K >> X >> Y;
    X--, Y--;
    vector<lint> P(N), Q(N);
    REP(i, N) cin >> P[i] >> Q[i];
    vector<double> e(M * 2);
    vector<int> from(M * 2), to(M * 2);

    ShortestPath<double> graph(N);

    map<pint, int> e2id;
    REP(i, M)
    {
        int s, t;
        cin >> s >> t;
        s--, t--;
        double dx = P[s] - P[t];
        double dy = Q[s] - Q[t];
        e[i] = e[i + M] = sqrt(dx * dx + dy * dy);
        from[i] = to[i + M] = s;
        from[i + M] = to[i] = t;
        graph.add_edge(s, t, e[i]);
        graph.add_edge(t, s, e[i]);
        e2id[pint(s, t)] = i;
        e2id[pint(t, s)] = i + M;
    }
    graph.Dijkstra(X);
    BS path;
    path.reset();
    int now = Y;
    while (now != X)
    {
        int prv = graph.prev[now];
        path[e2id[pint(prv, now)]] = 1;
        now = prv;
    }
    vector<BS> checked;
    priority_queue<P_, vector<P_>, greater<P_>> pq;
    vector<BS> alivebs;
    vector<BS> pathbs;
    vector<double> ret;

    BS state_;
    REP(i, M * 2) state_[i] = 1;
    checked.emplace_back(state_);
    alivebs.emplace_back(state_);
    pathbs.emplace_back(path);
    ret.emplace_back(graph.dist[Y]);

    while (ret.size() < K)
    {
        REP(eban, M * 2) if (pathbs.back()[eban])
        {
            BS b = alivebs.back();
            b[eban] = 0;
            ShortestPath<double> graph(N);
            REP(i, M * 2) if (b[i])
            {
                graph.add_edge(from[i], to[i], e[i]);
            }
            graph.Dijkstra(X);
            if (graph.dist[Y] > 1e16) continue;
            BS path;
            int now = Y;
            while (now != X)
            {
                int prv = graph.prev[now];
                path[e2id[pint(prv, now)]] = 1;
                now = prv;
            }
            pq.emplace(graph.dist[Y], b, path);
        }

        bool flg_conti = true;
        while (true)
        {
            if (pq.empty())
            {
                flg_conti = false;
                break;
            }
            bool bad = false;
            for (auto x : pathbs)
            {
                if (x == pq.top().third) bad = true;
            }
            if (!bad)
            {
                ret.emplace_back(pq.top().first);
            }
            alivebs.emplace_back(pq.top().second);
            pathbs.emplace_back(pq.top().third);
            pq.pop();
            break;
        }
        if (!flg_conti) break;
    }

    if (ret.size() < K) ret.resize(K, -1);
    REP(i, K)
    {
        if (ret[i] >= 0) cout << ret[i] << '\n';
        else cout << -1 << '\n';
    }
}
0