結果
問題 | No.1069 電柱 / Pole (Hard) |
ユーザー | satanic |
提出日時 | 2020-05-29 23:31:06 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 11,545 bytes |
コンパイル時間 | 2,598 ms |
コンパイル使用メモリ | 175,732 KB |
実行使用メモリ | 46,336 KB |
最終ジャッジ日時 | 2024-11-06 12:13:45 |
合計ジャッジ時間 | 10,842 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | RE | - |
testcase_05 | WA | - |
testcase_06 | AC | 21 ms
19,712 KB |
testcase_07 | RE | - |
testcase_08 | AC | 15 ms
9,088 KB |
testcase_09 | RE | - |
testcase_10 | AC | 25 ms
24,832 KB |
testcase_11 | AC | 3 ms
6,820 KB |
testcase_12 | AC | 5 ms
6,820 KB |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | AC | 12 ms
9,216 KB |
testcase_17 | RE | - |
testcase_18 | AC | 11 ms
7,552 KB |
testcase_19 | AC | 18 ms
10,880 KB |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | AC | 35 ms
32,256 KB |
testcase_25 | AC | 32 ms
32,384 KB |
testcase_26 | AC | 29 ms
32,128 KB |
testcase_27 | AC | 30 ms
32,384 KB |
testcase_28 | AC | 31 ms
32,000 KB |
testcase_29 | AC | 7 ms
9,344 KB |
testcase_30 | AC | 3 ms
6,820 KB |
testcase_31 | AC | 2 ms
6,816 KB |
testcase_32 | AC | 2 ms
6,820 KB |
testcase_33 | WA | - |
testcase_34 | RE | - |
testcase_35 | AC | 2 ms
6,820 KB |
testcase_36 | RE | - |
testcase_37 | RE | - |
testcase_38 | RE | - |
testcase_39 | AC | 2 ms
6,820 KB |
testcase_40 | RE | - |
testcase_41 | RE | - |
testcase_42 | RE | - |
testcase_43 | RE | - |
testcase_44 | AC | 14 ms
10,752 KB |
testcase_45 | AC | 10 ms
6,816 KB |
testcase_46 | AC | 12 ms
7,424 KB |
testcase_47 | AC | 15 ms
11,776 KB |
testcase_48 | AC | 25 ms
23,808 KB |
testcase_49 | AC | 16 ms
13,568 KB |
testcase_50 | AC | 4 ms
6,820 KB |
testcase_51 | AC | 22 ms
18,560 KB |
testcase_52 | AC | 4 ms
6,816 KB |
testcase_53 | AC | 24 ms
22,912 KB |
testcase_54 | RE | - |
testcase_55 | WA | - |
testcase_56 | RE | - |
testcase_57 | WA | - |
testcase_58 | AC | 2 ms
6,820 KB |
testcase_59 | RE | - |
testcase_60 | RE | - |
testcase_61 | RE | - |
testcase_62 | AC | 2 ms
6,820 KB |
testcase_63 | AC | 2 ms
6,820 KB |
testcase_64 | WA | - |
testcase_65 | RE | - |
testcase_66 | AC | 2 ms
6,820 KB |
testcase_67 | AC | 2 ms
6,820 KB |
testcase_68 | RE | - |
testcase_69 | AC | 31 ms
38,272 KB |
testcase_70 | AC | 35 ms
46,336 KB |
testcase_71 | RE | - |
testcase_72 | AC | 10 ms
12,800 KB |
testcase_73 | AC | 15 ms
19,072 KB |
testcase_74 | RE | - |
testcase_75 | RE | - |
testcase_76 | RE | - |
testcase_77 | RE | - |
testcase_78 | RE | - |
testcase_79 | RE | - |
testcase_80 | RE | - |
testcase_81 | RE | - |
testcase_82 | RE | - |
ソースコード
// // S i r o t a n w a t c h e s o v e r y o u . // // ...Jggg+J+JJJg@NQmgJa....., // ....gH@@@@HHB""""7"YYYYHMMMMMMM@@@@@@@Hma,. // ...JH@@MMHY"! ? __""YH@@@@N&... // ..JH@@HY"~ _TW@@@Mme. // .Jg@@#"= _TTM@@N.. // .Jg@@MY! ?T@@@h,. // .-@@@B! (TM@@@L // .(H@MY ?W@@@+ // .W@@@ .T@@@[ // .d@@M! .T@@N, // .d@M@' -W@@o. // (@@M\ ?M@N, // -d@M% .., .., j@@b // d@@M= TM9 ?MD W@@[ // .H@M: .W@H, // H@Ht ,@@# // (@@M~ .@@h. // .@@M% ..gmHHJ. .JdHga. .H@@e // j@@#_ .@@@@@@@b J@@@@@@@h. .H@@\ // d@@@ .4@@@@@@MF (@@@@@@@@ H@@b // d@@[ ?"BMY"= .d@@@@H, ?TWHHY"! d@@e // J@@b .JJJ-.., ,@@@@@@M% ......... -@@@M. // ?@@M\ ?YHHM@@@@b .. .W@@HP X@@HMWY"= d@@@# // ,@@@L. ?H@Ng&+gd@@#H@@NHaJ+gH@[ J@@@] // X@@@[ ...... ?"YYYYY"" ?"YHHHB"^ ..... (@@@# // WH@N+. .W@@@@MHB= .TWH@M@Hmc .H@@M~ // .H@@@@N, _!~ .d@@@N, // .J@@#T@@@N, .d@@@@@@@b. // (@@@@! .T@@@n, .(H@@@H>.W@@@x // (@@@F 4@@@@MaJ. .d@@@@Y77 4@@@r //.H@@P ?TM@@@@N... .-JH@HMY= d@@N, //(@@@F ?"WM@@@MQa-,. .(J(JN@@M#" Z@@@L // d@@H, (M@@@@@@@Ng&maJ.... .. ...J.J+W@@@@@@HY! .dH@b // ?M@@@N&. ..(JW@@@MM"?7""TYHMH@@HH@@@@@HHHgkHagHa(mggdmmagH@H@@Q@@HMMMHY"7!TMM@@@HaJ,. ..H@@@M^ // ?"W@@@@MN@@@@@H@@MMY" _???!"= ?WMMBYYTMH=7""Y@""?"~^ _"YM@@@@@@@@MH@@@@@#"^ // ?77WMMMYB""! _7"WWMMMY"7= // need #include <iostream> #include <algorithm> // data structure #include <bitset> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <utility> #include <vector> #include <complex> //#include <deque> #include <valarray> #include <unordered_map> #include <unordered_set> #include <array> // etc #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <chrono> #include <random> #include <numeric> #include <fstream> // input #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest& ...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int w_=0; w_<n; ++w_){MACRO_VEC_ROW_Scan(w_, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest& ...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest& ...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& R:c)for(auto& w:R)std::cin>>w; // output template<typename T>void MACRO_OUT(const T t) { std::cout << t; } template<typename First, typename...Rest>void MACRO_OUT(const First first, const Rest...rest) { std::cout << first << " "; MACRO_OUT(rest...); } #define OUT(...) MACRO_OUT(__VA_ARGS__); #define FOUT(n, dist) std::cout<<std::fixed<<std::setprecision(n)<<(dist); #define SOUT(n, c, dist) std::cout<<std::setw(n)<<std::setfill(c)<<(dist); #define EOUT(...) { OUT(__VA_ARGS__)BR; exit(0); } #define SP std::cout<<" "; #define TAB std::cout<<"\t"; #define BR std::cout<<"\n"; #define SPBR(w, n) std::cout<<(w + 1 == n ? '\n' : ' '); #define ENDL std::cout<<std::endl; #define FLUSH std::cout<<std::flush; #define SHOW(dist) {std::cerr << #dist << "\t: " << (dist) << "\n";} #define SHOWVECTOR(v) {std::cerr << #v << "\t: ";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";} #define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}} #define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t: ";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";} #define SHOWSTACK(a) {auto tmp(a);std::cerr << #a << "\t: ";while(!tmp.empty()){std::cerr << tmp.top() << " ";tmp.pop();}std::cerr << "\n";} // utility #define ALL(a) (a).begin(),(a).end() #define FOR(w, a, n) for(int w=(a);w<(n);++w) #define REP(w, n) FOR(w, 0, n) #define RFOR(w, a, n) for(int w=(n)-1;w>=(a);--w) #define RREP(w, n) RFOR(w, 0, n) template<class S, class T, class U> bool IN(S a, T x, U b) { return a <= x && x < b; } template<class T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; } template<class T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } // test template<class T> using V = std::vector<T>; template<class T> using VV = V<V<T>>; template<typename S, typename T> std::ostream& operator<<(std::ostream& os, std::pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } // type/const using i64 = std::int_fast64_t; using u64 = std::uint_fast64_t; using ll = long long; using ull = unsigned long long; using ld = long double; using PAIR = std::pair<i64, i64>; using PAIRLL = std::pair<ll, ll>; constexpr int INFINT = (1 << 30) - 1; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-6; constexpr i64 MOD = 998244353; constexpr double PI = 3.141592653589793238462643383279; template<class T, size_t N> void FILL(T(&a)[N], const T & val) { for (auto& x : a) x = val; } template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T & val) { for (auto& b : a) FILL(b, val); } template<class T> void FILL(std::vector<T> & a, const T & val) { for (auto& x : a) x = val; } template<class ARY, class T> void FILL(std::vector<std::vector<ARY>> & a, const T & val) { for (auto& b : a) FILL(b, val); } // ------------>8--------- signed main() { INIT; VAR(int, n, m, k, x, y); --x; --y; VEC_ROW(ld, n, p, q); VEC_ROW(int, m, P, Q); std::vector<std::map<int, ld>> g(n); VV<ld> ecost(n, V<ld>(n, 1e300)); REP(i, m) { --P[i]; --Q[i]; ecost[P[i]][Q[i]] = ecost[Q[i]][P[i]] = std::hypot(p[P[i]] - p[Q[i]], q[P[i]] - q[Q[i]]); g[P[i]][Q[i]] = ecost[P[i]][Q[i]]; g[Q[i]][P[i]] = ecost[Q[i]][P[i]]; } std::map<V<int>, ld> pathmap; std::vector<ld> dist(n); V<int> pre(n, -1); std::function<void(int)> Dijkstra = [&](int s) { using P = std::pair<ld, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; std::fill(dist.begin(), dist.end(), 1e300); FILL(pre, -1); dist[s] = 0; pq.push(P(0, s)); while (!pq.empty()) { P p = pq.top(); pq.pop(); int v = p.second; if (dist[v] < p.first) continue; for (auto e : g[v]) { if (dist[e.first] > dist[v] + e.second) { dist[e.first] = dist[v] + e.second; pre[e.first] = v; pq.push(P(dist[e.first], e.first)); } } } }; Dijkstra(x); V<int> path({ y }); { int now = y; while (pre[now] != -1) { now = pre[now]; path.emplace_back(now); } std::reverse(ALL(path)); } V<ld> ans({ dist[y] }); pathmap[path] = dist[y]; using Pa = std::pair<ld, V<int>>; std::set<Pa> set; std::set<V<int>> setv; while (ans.size() < k) { ld sum = 0.; V<int> tpath; REP(i, path.size() - 1) { tpath.emplace_back(path[i]); g[path[i]].erase(path[i + 1]); g[path[i + 1]].erase(path[i]); for (auto& pp : pathmap) { if (i + 1 >= pp.first.size()) continue; bool ok = true; REP(j, i + 1) { if (path[j] != pp.first[j]) { ok = false; break; } } if (ok) { g[pp.first[i]].erase(pp.first[i + 1]); g[pp.first[i + 1]].erase(pp.first[i]); } } Dijkstra(path[i]); for (auto& pp : pathmap) { g[pp.first[i]].erase(pp.first[i + 1]); g[pp.first[i + 1]].erase(pp.first[i]); } g[path[i]].erase(path[i + 1]); g[path[i + 1]].erase(path[i]); V<int> t2path = tpath; t2path.pop_back(); { V<int> tmppath({ y }); int now = y; while (pre[now] != -1) { now = pre[now]; tmppath.emplace_back(now); } while (!tmppath.empty()) { t2path.emplace_back(tmppath.back()); tmppath.pop_back(); } } if (!pathmap.count(t2path) && !setv.count(t2path)) { set.emplace(sum + dist[y], t2path); setv.emplace(t2path); } sum += ecost[path[i]][path[i + 1]]; } if (set.empty()) break; Pa mi = *set.begin(); set.erase(set.begin()); setv.erase(mi.second); pathmap[mi.second] = mi.first; path = mi.second; ans.emplace_back(mi.first); REP(i, m) { g[P[i]][Q[i]] = ecost[P[i]][Q[i]]; g[Q[i]][P[i]] = ecost[Q[i]][P[i]]; } } ans.resize(k, -1); REP(i, k) { if (ans[i] < -EPS || ans[i] > 1e100) { OUT(-1)BR; } else { FOUT(12, ans[i])BR; } } return 0; }