結果
| 問題 |
No.1065 電柱 / Pole (Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-05-29 23:47:57 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 203 ms / 2,000 ms |
| コード長 | 4,042 bytes |
| コンパイル時間 | 14,557 ms |
| コンパイル使用メモリ | 384,784 KB |
| 実行使用メモリ | 29,668 KB |
| 最終ジャッジ日時 | 2024-11-06 08:57:01 |
| 合計ジャッジ時間 | 19,875 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 46 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
#[allow(unused)]
macro_rules! debug {
($($format:tt)*) => (write!(std::io::stderr(), $($format)*).unwrap());
}
#[allow(unused)]
macro_rules! debugln {
($($format:tt)*) => (writeln!(std::io::stderr(), $($format)*).unwrap());
}
/*
* Dijkstra's algorithm.
* Verified by: AtCoder ABC164 (https://atcoder.jp/contests/abc164/submissions/12423853)
*/
struct Dijkstra {
edges: Vec<Vec<(usize, i64)>>, // adjacent list representation
}
impl Dijkstra {
fn new(n: usize) -> Self {
Dijkstra { edges: vec![Vec::new(); n] }
}
fn add_edge(&mut self, from: usize, to: usize, cost: i64) {
self.edges[from].push((to, cost));
}
/*
* This function returns a Vec consisting of the distances from vertex source.
*/
fn solve(&self, source: usize, inf: i64) -> Vec<i64> {
let n = self.edges.len();
let mut d = vec![inf; n];
// que holds (-distance, vertex), so that que.pop() returns the nearest element.
let mut que = std::collections::BinaryHeap::new();
que.push((0, source));
while let Some((cost, pos)) = que.pop() {
let cost = -cost;
if d[pos] <= cost {
continue;
}
d[pos] = cost;
for &(w, c) in &self.edges[pos] {
let newcost = cost + c;
if d[w] > newcost {
d[w] = newcost + 1;
que.push((-newcost, w));
}
}
}
return d;
}
}
fn solve() {
let out = std::io::stdout();
let mut out = BufWriter::new(out.lock());
macro_rules! puts {
($($format:tt)*) => (let _ = write!(out,$($format)*););
}
input! {
n: usize, m: usize,
vx: usize1, vy: usize1,
xy: [(i64, i64); n],
pq: [(usize1, usize1); m],
}
let mut dijk = Dijkstra::new(n);
for &(p, q) in &pq {
let (x1, y1) = xy[p];
let (x2, y2) = xy[q];
let dist = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
let dist = (dist as f64 * 1.0e10).sqrt() as i64;
dijk.add_edge(p, q, dist);
dijk.add_edge(q, p, dist);
}
let sol = dijk.solve(vx, 1 << 58);
puts!("{}\n", sol[vy] as f64 / 100000.0);
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}