結果

問題 No.1063 ルートの計算 / Sqrt Calculation
ユーザー Kiri8128Kiri8128
提出日時 2020-05-30 00:03:00
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 33 ms / 2,000 ms
コード長 2,076 bytes
コンパイル時間 112 ms
コンパイル使用メモリ 12,800 KB
実行使用メモリ 11,136 KB
最終ジャッジ日時 2024-11-06 09:28:03
合計ジャッジ時間 1,330 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
11,136 KB
testcase_01 AC 32 ms
11,008 KB
testcase_02 AC 33 ms
11,136 KB
testcase_03 AC 33 ms
11,008 KB
testcase_04 AC 31 ms
11,008 KB
testcase_05 AC 30 ms
11,008 KB
testcase_06 AC 31 ms
11,008 KB
testcase_07 AC 30 ms
11,136 KB
testcase_08 AC 31 ms
11,008 KB
testcase_09 AC 32 ms
11,008 KB
testcase_10 AC 30 ms
11,008 KB
testcase_11 AC 30 ms
11,008 KB
testcase_12 AC 31 ms
11,008 KB
testcase_13 AC 31 ms
11,136 KB
testcase_14 AC 31 ms
11,008 KB
testcase_15 AC 30 ms
11,136 KB
testcase_16 AC 31 ms
11,008 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

def gcd(a, b):
    while b: a, b = b, a % b
    return a
def isPrimeMR(n):
    d = n - 1
    d = d // (d & -d)
    L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in L:
        t = d
        y = pow(a, t, n)
        if y == 1: continue
        while y != n - 1:
            y = y * y % n
            if y == 1 or t == n - 1: return 0
            t <<= 1
    return 1
def findFactorRho(n):
    m = 1 << n.bit_length() // 8
    for c in range(1, 99):
        f = lambda x: (x * x + c) % n
        y, r, q, g = 2, 1, 1, 1
        while g == 1:
            x = y
            for i in range(r):
                y = f(y)
            k = 0
            while k < r and g == 1:
                ys = y
                for i in range(min(m, r - k)):
                    y = f(y)
                    q = q * abs(x - y) % n
                g = gcd(q, n)
                k += m
            r <<= 1
        if g == n:
            g = 1
            while g == 1:
                ys = f(ys)
                g = gcd(abs(x - ys), n)
        if g < n:
            if isPrimeMR(g): return g
            elif isPrimeMR(n // g): return n // g
            return findFactorRho(g)
def primeFactor(n):
    i = 2
    ret = {}
    rhoFlg = 0
    while i * i <= n:
        k = 0
        while n % i == 0:
            n //= i
            k += 1
        if k: ret[i] = k
        i += i % 2 + (3 if i % 3 == 1 else 1)
        if i == 101 and n >= 2 ** 20:
            while n > 1:
                if isPrimeMR(n):
                    ret[n], n = 1, 1
                else:
                    rhoFlg = 1
                    j = findFactorRho(n)
                    k = 0
                    while n % j == 0:
                        n //= j
                        k += 1
                    ret[j] = k

    if n > 1: ret[n] = 1
    if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
    return ret

N = int(input())
pf = primeFactor(N)
a, b = 1, 1
for p in pf:
    a *= p ** (pf[p] // 2)
    b *= p ** (pf[p] % 2)
print(a, b)
0